2,337 research outputs found
Hybrid-Entanglement in Continuous Variable Systems
Entanglement is one of the most fascinating features arising from
quantum-mechanics and of great importance for quantum information science. Of
particular interest are so-called hybrid-entangled states which have the
intriguing property that they contain entanglement between different degrees of
freedom (DOFs). However, most of the current continuous variable systems only
exploit one DOF and therefore do not involve such highly complex states. We
break this barrier and demonstrate that one can exploit squeezed cylindrically
polarized optical modes to generate continuous variable states exhibiting
entanglement between the spatial and polarization DOF. We show an experimental
realization of these novel kind of states by quantum squeezing an azimuthally
polarized mode with the help of a specially tailored photonic crystal fiber
Electronic Structure and Valence Band Spectra of Bi4Ti3O12
The x-ray photoelectron valence band spectrum and x-ray emission valence-band
spectra (Ti K _beta_5, Ti L_alpha, O K_alpha) of Bi4Ti3O12 are presented
(analyzed in the common energy scale) and interpreted on the basis of a
band-structure calculation for an idealized I4/mmm structure of this material.Comment: 6 pages + 7 PostScript figures, RevTex3.0, to be published in
Phys.Rev.B52 (Oct.95). Figures also available via anonymous ftp at
ftp://ftp.physik.uni-osnabrueck.de/pub/apostnik/BiTiO
Seasonal sea ice variability in eastern Fram Strait over the last 2000 years
We present a high-resolution (ca. 50 years) biomarker-based reconstruction of seasonal sea ice conditions for the West Svalbard continental margin covering the last ca. 2k years. Our reconstruction is based on the distributions of sea ice algal (IP25) and phytoplankton (brassicasterol and HBI III) lipids in marine sediment core MSM5/5-712-1 retrieved in 2007. The individual and combined (PIP25) temporal profiles, together with estimates of spring sea ice concentration [SpSIC (%)] based on a recent calibration, suggest that sea ice conditions during the interval ca. 50–1700 AD may not have been as variable as described in previous reconstructions, with SpSIC generally in the range ca. 35–45 %. A slight enhancement in SpSIC (ca. 50 %) was identified at ca. 1600 AD, contemporaneous with the Little Ice Age, before declining steadily over the subsequent ca. 400 years to near-modern values (ca. 25 %). In contrast to these spring conditions, our data suggest that surface waters during summer months were ice free for the entire record. The decline in SpSIC in recent centuries is consistent with the known retreat of the winter ice margin from documentary sea ice records. This decrease in sea ice is possibly attributed to enhanced inflow of warm water delivered by the North Atlantic Current and/or increasing air temperatures, as shown in previous marine and terrestrial records. Comparison of our biomarker-based sea ice reconstruction with one obtained previously based on dinocyst distributions in a core from a similar location reveals partial agreement in the early–mid part of the records (ca. 50–1700 AD), but a notable divergence in the most recent ca. 300 years. We hypothesise that this divergence likely reflects the individual signatures of each proxy method, especially as the biomarker-based SpSIC estimates during this interval (\u3c25 %) are much lower than the threshold level (\u3e50 % sea ice cover) used for the dinocyst approach. Alternatively, divergence between outcomes may indicate seasonality shifts in sea ice conditions, such that a combined biomarker-dinocyst approach in future studies might provide further insights into this important parameter
Self-trapping transition for nonlinear impurities embedded in a Cayley tree
The self-trapping transition due to a single and a dimer nonlinear impurity
embedded in a Cayley tree is studied. In particular, the effect of a perfectly
nonlinear Cayley tree is considered. A sharp self-trapping transition is
observed in each case. It is also observed that the transition is much sharper
compared to the case of one-dimensional lattices. For each system, the critical
values of for the self-trapping transitions are found to obey a
power-law behavior as a function of the connectivity of the Cayley tree.Comment: 6 pages, 7 fig
Electro-Magnetic Earthquake Bursts and Critical Rupture of Peroxy Bond Networks in Rocks
We propose a mechanism for the low frequency electromagnetic emissions and
other electromagnetic phenomena which have been associated with earthquakes.
The mechanism combines the critical earthquake concept and the concept of crust
acting as a charging electric battery under increasing stress. The electric
charges are released by activation of dormant charge carriers in the oxygen
anion sublattice, called peroxy bonds or positive hole pairs (PHP), where a PHP
represents an with ,
i.e. an in a matrix of of silicates. We propose that PHP are
activated by plastic deformations during the slow cooperative build-up of
stress and the increasingly correlated damage culminating in a large
``critical'' earthquake. Recent laboratory experiments indeed show that
stressed rocks form electric batteries which can release their charge when a
conducting path closes the equivalent electric circuit. We conjecture that the
intermittent and erratic occurrences of EM signals are a consequence of the
progressive build-up of the battery charges in the Earth crust and their
erratic release when crack networks are percolating throughout the stressed
rock volumes, providing a conductive pathway for the battery currents to
discharge. EM signals are thus expected close to the rupture, either slightly
before or after, that is, when percolation is most favored.Comment: 17 pages with 3 figures, extended discussion with 1 added figure and
162 references. The new version provides both a synthesis of two theories and
a review of the fiel
Time evolution of models described by one-dimensional discrete nonlinear Schr\"odinger equation
The dynamics of models described by a one-dimensional discrete nonlinear
Schr\"odinger equation is studied. The nonlinearity in these models appears due
to the coupling of the electronic motion to optical oscillators which are
treated in adiabatic approximation. First, various sizes of nonlinear cluster
embedded in an infinite linear chain are considered. The initial excitation is
applied either at the end-site or at the middle-site of the cluster. In both
the cases we obtain two kinds of transition: (i) a cluster-trapping transition
and (ii) a self-trapping transition. The dynamics of the quasiparticle with the
end-site initial excitation are found to exhibit, (i) a sharp self-trapping
transition, (ii) an amplitude-transition in the site-probabilities and (iii)
propagating soliton-like waves in large clusters. Ballistic propagation is
observed in random nonlinear systems. The effect of nonlinear impurities on the
superdiffusive behavior of random-dimer model is also studied.Comment: 16 pages, REVTEX, 9 figures available upon request, To appear in
Physical Review
The Citation Field of Evolutionary Economics
Evolutionary economics has developed into an academic field of its own,
institutionalized around, amongst others, the Journal of Evolutionary Economics
(JEE). This paper analyzes the way and extent to which evolutionary economics
has become an interdisciplinary journal, as its aim was: a journal that is
indispensable in the exchange of expert knowledge on topics and using
approaches that relate naturally with it. Analyzing citation data for the
relevant academic field for the Journal of Evolutionary Economics, we use
insights from scientometrics and social network analysis to find that, indeed,
the JEE is a central player in this interdisciplinary field aiming mostly at
understanding technological and regional dynamics. It does not, however, link
firmly with the natural sciences (including biology) nor to management
sciences, entrepreneurship, and organization studies. Another journal that
could be perceived to have evolutionary acumen, the Journal of Economic Issues,
does relate to heterodox economics journals and is relatively more involved in
discussing issues of firm and industry organization. The JEE seems most keen to
develop theoretical insights
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
The impact of point mutations in the human androgen receptor : classification of mutations on the basis of transcriptional activity
Peer reviewedPublisher PD
- …
