30 research outputs found
Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells
BACKGROUND: Expression of folylpoly-γ-glutamate synthetase (FPGS) gene is two- to three-fold higher in B-precursor ALL (Bp- ALL) than in T-lineage ALL (T-ALL) and correlates with intracellular accumulation of methotrexate (MTX) polyglutamates and lymphoblast sensitivity to MTX. In this report, we investigated the molecular regulatory mechanisms directing FPGS gene expression in Bp-ALL and T-ALL cells. METHODS: To determine FPGS transcription rate in Bp-ALL and T-ALL we used nuclear run-on assays. 5'-RACE was used to uncover potential regulatory regions involved in the lineage differences. We developed a luciferase reporter gene assay to investigate FPGS promoter/enhancer activity. To further characterize the FPGS proximal promoter, we determined the role of the putative transcription binding sites NFY and E-box on FPGS expression using luciferase reporter gene assays with substitution mutants and EMSA. RESULTS: FPGS transcription initiation rate was 1.6-fold higher in NALM6 vs. CCRF-CEM cells indicating that differences in transcription rate led to the observed lineage differences in FPGS expression between Bp-ALL and T-ALL blasts. Two major transcripts encoding the mitochondrial/cytosolic and cytosolic isoforms were detected in Bp-ALL (NALM6 and REH) whereas in T-ALL (CCRF-CEM) cells only the mitochondrial/cytosolic transcript was detected. In all DNA fragments examined for promoter/enhancer activity, we measured significantly lower luciferase activity in NALM6 vs. CCRF-CEM cells, suggesting the need for additional yet unidentified regulatory elements in Bp-ALL. Finally, we determined that the putative transcription factor binding site NFY, but not E-box, plays a role in FPGS transcription in both Bp- and T-lineage. CONCLUSION: We demonstrated that the minimal FPGS promoter region previously described in CCRF-CEM is not sufficient to effectively drive FPGS transcription in NALM6 cells, suggesting that different regulatory elements are required for FPGS gene expression in Bp-cells. Our data indicate that the control of FPGS expression in human hematopoietic cells is complex and involves lineage-specific differences in regulatory elements, transcription initiation rates, and mRNA processing. Understanding the lineage-specific mechanisms of FPGS expression should lead to improved therapeutic strategies aimed at overcoming MTX resistance or inducing apoptosis in leukemic cells
Validation of the Cognitive Assessment of Later Life Status (CALLS) instrument: a computerized telephonic measure
<p>Abstract</p> <p>Background</p> <p>Brief screening tests have been developed to measure cognitive performance and dementia, yet they measure limited cognitive domains and often lack construct validity. Neuropsychological assessments, while comprehensive, are too costly and time-consuming for epidemiological studies. This study's aim was to develop a psychometrically valid telephone administered test of cognitive function in aging.</p> <p>Methods</p> <p>Using a sequential hierarchical strategy, each stage of test development did not proceed until specified criteria were met. The 30 minute Cognitive Assessment of Later Life Status (CALLS) measure and a 2.5 hour in-person neuropsychological assessment were conducted with a randomly selected sample of 211 participants 65 years and older that included equivalent distributions of men and women from ethnically diverse populations.</p> <p>Results</p> <p>Overall Cronbach's coefficient alpha for the CALLS test was 0.81. A principal component analysis of the CALLS tests yielded five components. The CALLS total score was significantly correlated with four neuropsychological assessment components. Older age and having a high school education or less was significantly correlated with lower CALLS total scores. Females scored better overall than males. There were no score differences based on race.</p> <p>Conclusion</p> <p>The CALLS test is a valid measure that provides a unique opportunity to reliably and efficiently study cognitive function in large populations.</p
Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function
BACKGROUND ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. RESULTS We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. CONCLUSIONS Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.This work was supported by Department of Zoology research grants
