4,283 research outputs found
Summertime distribution and relations of reactive odd nitrogen species and NOyin the troposphere over Canada
We report here large-scale features of the distribution of NOx, HNO3, PAN, particle (NO3) (-) and NOy in the troposphere from 0.15 to 6 km altitude over central Canada. These measurements were conducted in July-August 1990 from the NASA Wallops Electra aircraft as part of the joint United States-Canadian Arctic Boundary Layer Expedition (ABLE) 3B-Northern Wetlands Study. Our findings show that this region is generally NOx limited, with NOx mixing ratios typically 20-30 parts per trillion by volume (pptv). We found little direct evidence for anthropogenic enhancement of mixing ratios of reactive odd nitrogen species and NOy above those in "background" air. Instead, it appears that enhancements in the mixing ratios of these species were primarily due to emissions from several day old or CO -rich -NOx-poor smoldering local biomass-burning fires. NOx mixing ratios in biomass-burning impacted air masses were usually <50 pptv, but those of HNO3 and PAN were typically 100-300 pptv representin g a twofold-threefold enhancement over "background" air. During our study period, inputs of what appeared to be aged tropical air were a major factor influencing the distribution of reactive odd nitrogen in the midtroposphere over northeastern North America. These air masses were quite depleted in NOy (generally <150 pptv), and a frequent summertime occurrence of such air masses over this region would imply a significant influence on the reactive odd nitrogen budget. Our findings show that the chemical composition of aged air masses over subarctic Canada and those documented in the Arctic during ABLE 3A have strikingly similar chemistries, suggesting large-scale connection between the air masses influencing these regions
Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses
In this paper, we systematically investigate both the synfire propagation and
firing rate propagation in feedforward neuronal network coupled in an
all-to-all fashion. In contrast to most earlier work, where only reliable
synaptic connections are considered, we mainly examine the effects of
unreliable synapses on both types of neural activity propagation in this work.
We first study networks composed of purely excitatory neurons. Our results show
that both the successful transmission probability and excitatory synaptic
strength largely influence the propagation of these two types of neural
activities, and better tuning of these synaptic parameters makes the considered
network support stable signal propagation. It is also found that noise has
significant but different impacts on these two types of propagation. The
additive Gaussian white noise has the tendency to reduce the precision of the
synfire activity, whereas noise with appropriate intensity can enhance the
performance of firing rate propagation. Further simulations indicate that the
propagation dynamics of the considered neuronal network is not simply
determined by the average amount of received neurotransmitter for each neuron
in a time instant, but also largely influenced by the stochastic effect of
neurotransmitter release. Second, we compare our results with those obtained in
corresponding feedforward neuronal networks connected with reliable synapses
but in a random coupling fashion. We confirm that some differences can be
observed in these two different feedforward neuronal network models. Finally,
we study the signal propagation in feedforward neuronal networks consisting of
both excitatory and inhibitory neurons, and demonstrate that inhibition also
plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience
(published
Energy Relaxation in Nonlinear One-Dimensional Lattices
We study energy relaxation in thermalized one-dimensional nonlinear arrays of
the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in
contact with a zero-temperature reservoir via damping forces. Harmonic arrays
relax by sequential phonon decay into the cold reservoir, the lower frequency
modes relaxing first. The relaxation pathway for purely anharmonic arrays
involves the degradation of higher-energy nonlinear modes into lower energy
ones. The lowest energy modes are absorbed by the cold reservoir, but a small
amount of energy is persistently left behind in the array in the form of almost
stationary low-frequency localized modes. Arrays with interactions that contain
both a harmonic and an anharmonic contribution exhibit behavior that involves
the interplay of phonon modes and breather modes. At long times relaxation is
extremely slow due to the spontaneous appearance and persistence of energetic
high-frequency stationary breathers. Breather behavior is further ascertained
by explicitly injecting a localized excitation into the thermalized array and
observing the relaxation behavior
Seasonal sea ice variability in eastern Fram Strait over the last 2000 years
We present a high-resolution (ca. 50 years) biomarker-based reconstruction of seasonal sea ice conditions for the West Svalbard continental margin covering the last ca. 2k years. Our reconstruction is based on the distributions of sea ice algal (IP25) and phytoplankton (brassicasterol and HBI III) lipids in marine sediment core MSM5/5-712-1 retrieved in 2007. The individual and combined (PIP25) temporal profiles, together with estimates of spring sea ice concentration [SpSIC (%)] based on a recent calibration, suggest that sea ice conditions during the interval ca. 50–1700 AD may not have been as variable as described in previous reconstructions, with SpSIC generally in the range ca. 35–45 %. A slight enhancement in SpSIC (ca. 50 %) was identified at ca. 1600 AD, contemporaneous with the Little Ice Age, before declining steadily over the subsequent ca. 400 years to near-modern values (ca. 25 %). In contrast to these spring conditions, our data suggest that surface waters during summer months were ice free for the entire record. The decline in SpSIC in recent centuries is consistent with the known retreat of the winter ice margin from documentary sea ice records. This decrease in sea ice is possibly attributed to enhanced inflow of warm water delivered by the North Atlantic Current and/or increasing air temperatures, as shown in previous marine and terrestrial records. Comparison of our biomarker-based sea ice reconstruction with one obtained previously based on dinocyst distributions in a core from a similar location reveals partial agreement in the early–mid part of the records (ca. 50–1700 AD), but a notable divergence in the most recent ca. 300 years. We hypothesise that this divergence likely reflects the individual signatures of each proxy method, especially as the biomarker-based SpSIC estimates during this interval (\u3c25 %) are much lower than the threshold level (\u3e50 % sea ice cover) used for the dinocyst approach. Alternatively, divergence between outcomes may indicate seasonality shifts in sea ice conditions, such that a combined biomarker-dinocyst approach in future studies might provide further insights into this important parameter
Platelet count and transfusion requirements during moderate or severe postpartum haemorrhage
Limited data exist on platelet transfusion during postpartum haemorrhage. We retrospectively analysed a consecutive cohort from a single centre of 347 women with moderate or severe postpartum haemorrhage, transfused according to national guidelines. Twelve (3%) women required a platelet transfusion. There were no differences between women who did and did not receive platelets with respect to age, mode of initiation of labour or mode of delivery. Women receiving a platelet transfusion had a lower median (IQR [range]) platelet count at study entry than women who did not receive platelets before haemorrhage (135 (97–175 [26–259])×109.l−1 vs 224 (186–274 [91–1006])×109.l−1), respectively), and at diagnosis of postpartum haemorrhage (median 114 (78–153 [58–238])×109.l−1 vs 193 (155–243 [78–762])×109.l−1 respectively). Six women were thrombocytopenic pre-delivery. The cause of haemorrhage that was associated with the highest rate of platelet transfusion was placental abruption, with three of 14 women being transfused. If antenatal thrombocytopenia or consumptive coagulopathy were not present, platelets were only required for haemorrhage > 5000 ml. Early formulaic platelet transfusion would have resulted in many women receiving platelets unnecessarily. Using current guidelines, the need for platelet transfusion is uncommon without antenatal thrombocytopenia, consumptive coagulopathy or haemorrhage > 5000 ml. We found no evidence to support early fixed-ratio platelet transfusion
Recommended from our members
ENSO feedbacks and their relationships with the mean state in a flux adjusted ensemble
The El Niño Southern Oscillation (ENSO) is governed by a combination of amplifying and damping ocean–atmosphere feedbacks in the equatorial Pacific. Here we quantify these feedbacks in a flux adjusted HadCM3 perturbed physics ensemble under present day conditions and a future emissions scenario using the Bjerknes Stability Index (BJ index). Relationships between feedbacks and both the present day biases and responses under climate change of the mean equatorial Pacific climate are investigated. Despite minimised mean sea surface temperature biases through flux adjustment, the important dominant ENSO feedbacks still show biases with respect to observed feedbacks and inter-ensemble diversity. The dominant positive thermocline and zonal advective feedbacks are found to be weaker in ensemble members with stronger mean zonal advection. This is due to a weaker sensitivity of the thermocline slope and zonal surface ocean currents in the east Pacific to surface wind stress anomalies. A drier west Pacific is also found to be linked to weakened shortwave and latent heat flux damping, suggesting a link between ENSO characteristics and the hydrological cycle. In contrast to previous studies using the BJ index that find positive relationships between the index and ENSO amplitude, here they are weakly or negatively correlated, both for present day conditions and for projected differences. This is caused by strong thermodynamic damping which dominates over positive feedbacks, which alone approximate ENSO amplitude well. While the BJ index proves useful for individual linear feedback analysis, we urge caution in using the total linear BJ index alone to assess the reasons for ENSO amplitude biases and its future change in models
Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity
Nonlinear localized excitations in one-dimensional diatomic lattices with
cubic and quartic nonlinearity are considered analytically by a
quasi-discreteness approach. The criteria for the occurence of asymmetric gap
solitons (with vibrating frequency lying in the gap of phonon bands) and
small-amplitude, asymmetric intrinsic localized modes (with the vibrating
frequency being above all the phonon bands) are obtained explicitly based on
the modulational instabilities of corresponding linear lattice plane waves. The
expressions of particle displacement for all these nonlinear localized
excitations are also given. The result is applied to standard two-body
potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The
comparison with previous numerical study of the anharmonic gap modes in
diatomic lattices for the standard two-body potentials is made and good
agreement is found.Comment: 24 pages in Revtex, 2 PS figure
Engaging with community researchers for exposure science: lessons learned from a pesticide biomonitoring study
A major challenge in biomonitoring studies with members of the general public is ensuring their continued involvement throughout the necessary length of the research. The paper presents evidence on the use of community researchers, recruited from local study areas, as a mechanism for ensuring effective recruitment and retention of farmer and resident participants for a pesticides biomonitoring study. The evidence presented suggests that community researchers' abilities to build and sustain trusting relationships with participants enhanced the rigour of the study as a result of their on-the-ground responsiveness and flexibility resulting in data collection beyond targets expected
- …
