10 research outputs found
Pulse energy packing effects on material transport during laser processing of < 1
The effects of energy pulse packing on material transport during single-pulse laser processing of silicon is studied using temporarily shaped pulses with durations from 50 to 150 ns. Six regimes of material transport were identified and disambiguated through energy packing considerations over a range of pulse durations. Energy packing has been shown to shift the interaction to energetically costlier regimes without appreciable benefit in either depth, material removal or crater morphology and quality.The authors would like to thank the UK Technology Strategy Board under project TP14/HVM/6/I/BD5665. The authors acknowledge the EPSRC Centre for Doctoral Training in Photonic Systems Development for their generous support
Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography
Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44μJ, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μm/μJ) is shown to occur when using pulse energies of E>44μJ, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E>44μJ for pulse arrival times corresponding to > 1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.This work was collaboratively carried out under EPSRC Grant Number EP/K030884/1, as part of the EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes. One of the authors acknowledges his PhD studentship by the Federal Government of Nigeria (TETFUND) in conjunction with the Federal University of Petroleum Resources Effurun (FUPRE)
Pulse energy packing effects on material transport during laser processing of < 1 | 1 | 1 > silicon
Structuring of titanium using a nanosecond-pulsed Nd:YVO4 laser at 1064 nm
We demonstrate the manufacture of organized microstructures on titanium substrates in an air atmosphere utilizing a pulsed Nd:YVO laser with pulse length of 8 ns and repetition rate of 30 kHz at 1064 nm. The ablation threshold of titanium for irradiation at this wavelength was measured to be in the range of 1.7-1.8 J/cm . For structuring of the metal, we used maximum laser energy fluence above the ablation threshold. This led to the generation of arrays of organized microstructures with average periods ranging from ~40 to ~90 µm. The mechanism for formation of the microstructures is discussed. Formation of such organized structures on titanium could find applications in sensing and biocompatibility
