1,197 research outputs found

    Shelter Truk Jl. Solo-Sragen

    Get PDF
    Transportasi adalah pemindahan barang dan manusia dari tempat asal ke tempat tujuan. Sedangkan pengertian lain, transportasi adalah perpindahan dari suatu tempat ke tempat lain dengan menggunakan alat pengangkutan, baik yang digerakkan oleh tenaga manusia, hewan (kuda, sapi, kerbau), atau mesin. Konsep transportasi didasarkan pada adanya perjalanan (trip) antara asal (origin) dan tujuan (destination). Jl. Solo-Sragen merupakan gerbang untuk masuk Propinsi Jawa Tengah dan Jawa Timur. Dari perkembangan kendaraan dari tahun ke tahun semakin meningkat jumlah truck yang masuk di Kabupatebn Sragen cukup tinggi. Selain itu pengamatan lapangan juga banyak dijumpai di tepi Jl. Solo-Sragen di Kecamatan Masaran paling banyak digunakan untuk istirahat dan awak truck. Selain itu darah tersebut ada pabrik textil sering truck yang mau masuk ke pabrik itu berhenti di tepi jalan untuk antri masuk pabrik maka perlu disediakan kawasan istirahat untuk pengemudi truck dan armada trucknya. Memberikian tempat istirahat sebagai wadah bagi para pengemudi kendaraaan angkutan barang/truck. Untuk beris tirahat serta mengurangi gangguan arus lalu lintas yang di sebabkan oleh kendaraan angkutan barang yang parkir di tepi jalan. Menciptakan kawasan tempat istirahat yang nyaman khusus untuk para pengemudi, awak/kenek truck yang mampu membeikan fasilitas serta menampung aktifitas pengemudi dan kendaraan selama beristirahat

    Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity

    Get PDF
    Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4). All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3 also accepts a wide range of substrates but with very strong preference for producing benzyl acetate. Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating 268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the multiplicity of AAT genes accounts for the great diversity of esters formed in melon

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-D-GlcNAc-β-1,4-L-rhamnosyltransferase

    Get PDF
    Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-D-GlcNAc-β-1,4-L-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in &gt;40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter– dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-D-Glc-β-1,4-L-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.</p

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Sistem Informasi Puskesmas Karangrayung 2 Berbasis Web

    Get PDF
    Center is an institution that is moving in the field of health. Puskesmas is losing the first center of development, coaching and health services that are located closest to the community. Puskesmas has an important role in the management of public health. Technological developments have influenced all aspects of life. Today's communities prefer to do browsing to get information from on having to ask people. Thus this information system was built to facilitate the officers to record and present information easily using computer systems and databases as a means of storage. This information system is built using the PHP and Mysql programming languages as a database. The research methods are used by analysts, design, implementation and testing. With the information system Puskesmas Karangrayung 2 This web-based, will facilitate the community and the Puskesmas officers in accessing information and data easily

    Modern Crack Detection for Bridge Infrastructure Maintenance Using Machine Learning

    Get PDF
    Manual investigation of damages incurred to infrastructure is a challenging process, in that it is not only labour-intensive and expensive but also inefficient and error-prone. To automate the process, a method that is based on computer vision for automatically detecting cracks from 2D images is a viable option. Amongst the different methods of deep learning that are commonly used, the convolutional neural network (CNNs) is one that provides the opportunity for end-to-end mapping/learning of image features instead of using the manual suboptimal image feature extraction. Specifically, CNNs do not require human supervision and are more suitable to be used for indoor and outdoor applications requiring image feature extraction and are less influenced by internal and external noise. Additionally, the CNN’s are also computationally efficient since they are based on special convolution layers and pooling operations that enable the full execution of CNN frameworks on several hardware devices. Keeping this in mind, we propose a deep CNN framework that is based on 10 different convolution layers along with a cycle GAN (Generative Adversarial Network) for predicting the crack segmentation pixel by pixel in an end-to-end manner. The methods proposed here include the Deeply Supervised Nets (DSN) and Fully Convolutional Networks (FCN). The use of DSN enables integrated feature supervision for each stage of convolution. Furthermore, the model has been designed intricately for learning and aggregating multi-level and multiscale features while moving from the lower to higher convolutional layers through training. Hence, the architecture in use here is unique from the ones in practice which just use the final convolution layer. In addition, to further refine the predicted results, we have used a guided filter and CRFs (Conditional Random Fields) based methods. The verification step for the proposed framework was carried out with a set of 537 images. The deep hierarchical CNN framewo

    A Hybrid Active Neutral Point Clamped Inverter Utilizing Si and Ga2O3 Semiconductors: Modelling and Performance Analysis.

    Get PDF
    In this paper, the performance of an active neutral point clamped (ANPC) inverter is evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga2O3) devices. The hybridization of semiconductor devices is performed since the production volume and fabrication of ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive. In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the Ga2O3 switches are operated at a higher switching frequency. The proposed ANPC mitigates the fault current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is developed by applying a specified modulation technique and an intelligent switching arrangement, which has further improved its performance by optimizing the loss distribution among the Si/Ga2O3 devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the common mode current stress on the switches and thus generates a lower common-mode voltage on the output. It can also operate at a broad range of power factors. The paper extensively analyzed the switching performance of UWBG semiconductor (Ga2O3) devices using double pulse testing (DPT) and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved a maximum efficiency of 99.1%
    corecore