14,502 research outputs found
Multiple QTL for horticultural traits and quantitative resistance to Phytophthora infestans linked on Solanum habrochaites chromosome 11.
Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato
Negations in syllogistic reasoning: Evidence for a heuristic–analytic conflict
An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails
Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method
According to a recent proposal [S. Takayama et al., Appl. Phys. Lett. 87,
061107 (2005)], the triangular lattice of triangular air holes may allow to
achieve a complete photonic band gap in two-dimensional photonic crystal slabs.
In this work we present a systematic theoretical study of this photonic lattice
in a high-index membrane, and a comparison with the conventional triangular
lattice of circular holes, by means of the guided-mode expansion method whose
detailed formulation is described here. Photonic mode dispersion below and
above the light line, gap maps, and intrinsic diffraction losses of
quasi-guided modes are calculated for the periodic lattice as well as for line-
and point-defects defined therein. The main results are summarized as follows:
(i) the triangular lattice of triangular holes does indeed have a complete
photonic band gap for the fundamental guided mode, but the useful region is
generally limited by the presence of second-order waveguide modes; (ii) the
lattice may support the usual photonic band gap for even modes (quasi-TE
polarization) and several band gaps for odd modes (quasi-TM polarization),
which could be tuned in order to achieve doubly-resonant frequency conversion
between an even mode at the fundamental frequency and an odd mode at the
second-harmonic frequency; (iii) diffraction losses of quasi-guided modes in
the triangular lattices with circular and triangular holes, and in line-defect
waveguides or point-defect cavities based on these geometries, are comparable.
The results point to the interest of the triangular lattice of triangular holes
for nonlinear optics, and show the usefulness of the guided-mode expansion
method for calculating photonic band dispersion and diffraction losses,
especially for higher-lying photonic modes.Comment: 16 pages, 11 figure
Gearing up for Improved Collaboration:the Potentials and Limits of Cooperative Research for Incorporating Fishermen's Knowledge
The identification of mitochondrial DNA variants in glioblastoma multiforme
Background:
Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis.
Results:
Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas.
Conclusions:
These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation
Modifying memory for a museum tour in older adults: reactivation-related updating that enhances and distorts memory is reduced in ageing
Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults (St. Jacques & Schacter, 2013; Psychological Science) we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here, we examined age-related changes in the quality of memory reactivation on subsequent memory. Young and older adults reactivated memories for museum stops immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that aging alters reactivation-related updating processes that allow memories to be strengthened and updated with new information- consequently reducing memory distortions in older compared to young adults
High-precision photometry of WASP-12 b transits
The transiting extrasolar planet WASP-12 b was found to be one of the most
intensely irradiated exoplanets. It is unexpectedly bloated and is losing mass
that may accrete into the host star. Our aim was to refine the parameters of
this intriguing system and search for signs of transit timing variations. We
gathered high-precision light curves for two transits of WASP-12 b. Assuming
various limb-darkening laws, we generated best-fitting models and redetermined
parameters of the system. Error estimates were derived by the prayer bead
method and Monte Carlo simulations. System parameters obtained by us are found
to agree with previous studies within one sigma. Use of the non-linear
limb-darkening laws results in the best-fitting models. With two new
mid-transit times, the ephemeris was refined to BJD(TDB)=(2454508.97682 +/-
0.00020) + (1.09142245 +/- 0.00000033) E. Interestingly, indications of transit
timing variation are detected at the level of 3.4 sigma. This signal can be
induced by an additional planet in the system. Simplified numerical simulations
shows that a perturber could be a terrestrial-type planet if both planets are
in a low-order orbital resonance. However, we emphasise that further
observations are needed to confirm variation and to constrain properties of the
perturber.Comment: 5 pages, 3 figures, accepted for publication in A&
Few-anyon systems in a parabolic dot
The energy levels of two and three anyons in a two-dimensional parabolic
quantum dot and a perpendicular magnetic field are computed as power series in
1/|J|, where J is the angular momentum. The particles interact repulsively
through a coulombic (1/r) potential. In the two-anyon problem, the reached
accuracy is better than one part in 10^5. For three anyons, we study the
combined effects of anyon statistics and coulomb repulsion in the ``linear''
anyonic states.Comment: LaTeX, 6 pages, 4 postscript figure
Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV
Dispersive wave emission (DWE) in gas-filled hollow-core dielectric
waveguides is a promising source of tuneable coherent and broadband radiation,
but so far the generation of few-femtosecond pulses using this technique has
not been demonstrated. Using in-vacuum frequency-resolved optical gating, we
directly characterise tuneable 3fs pulses in the deep ultraviolet generated via
DWE. Through numerical simulations, we identify that the use of a pressure
gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure
Analysis of new high-precision transit light curves of WASP-10 b: starspot occultations, small planetary radius, and high metallicity
The WASP-10 planetary system is intriguing because different values of radius
have been reported for its transiting exoplanet. The host star exhibits
activity in terms of photometric variability, which is caused by the rotational
modulation of the spots. Moreover, a periodic modulation has been discovered in
transit timing of WASP-10 b, which could be a sign of an additional body
perturbing the orbital motion of the transiting planet. We attempt to refine
the physical parameters of the system, in particular the planetary radius,
which is crucial for studying the internal structure of the transiting planet.
We also determine new mid-transit times to confirm or refute observed anomalies
in transit timing. We acquired high-precision light curves for four transits of
WASP-10 b in 2010. Assuming various limb-darkening laws, we generated best-fit
models and redetermined parameters of the system. The prayer-bead method and
Monte Carlo simulations were used to derive error estimates. Three transit
light curves exhibit signatures of the occultations of dark spots by the planet
during its passage across the stellar disk. The influence of stellar activity
on transit depth is taken into account while determining system parameters. The
radius of WASP-10 b is found to be no greater than 1.03 Jupiter radii, a value
significantly smaller than most previous studies indicate. We calculate
interior structure models of the planet, assuming a two-layer structure with
one homogeneous envelope atop a rock core. The high value of the WASP-10 b's
mean density allows one to consider the planet's internal structure including
270 to 450 Earth masses of heavy elements. Our new mid-transit times confirm
that transit timing cannot be explained by a constant period if all literature
data points are considered. They are consistent with the ephemeris assuming a
periodic variation of transit timing...Comment: Accepted for publication in A&
- …
