7 research outputs found

    Maximum Angle of Stability of a Wet Granular Pile

    Full text link
    Anyone who has built a sandcastle recognizes that the addition of liquid to granular materials increases their stability. However, measurements of this increased stability often conflict with theory and with each other [1-7]. A friction-based Mohr-Coulomb model has been developed [3,8]. However, it distinguishes between granular friction and inter-particle friction, and uses the former without providing a physical mechanism. Albert, {\em et al.} [2] analyzed the geometric stability of grains on a pile's surface. The frictionless model for dry particles is in excellent agreement with experiment. But, their model for wet grains overestimates stability and predicts no dependence on system size. Using the frictionless model and performing stability analysis within the pile, we reproduce the dependence of the stability angle on system size, particle size, and surface tension observed in our experiments. Additionally, we account for past discrepancies in experimental reports by showing that sidewalls can significantly increase the stability of granular material.Comment: 4 pages, 4 figure

    Wet Granular Materials

    Full text link
    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g., the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics; tex-style change

    Endodontic Records and Legal Responsibilities

    No full text

    Journal of Law and Administrative Sciences No. 3/2015

    No full text
    corecore