7 research outputs found
Maximum Angle of Stability of a Wet Granular Pile
Anyone who has built a sandcastle recognizes that the addition of liquid to
granular materials increases their stability. However, measurements of this
increased stability often conflict with theory and with each other [1-7]. A
friction-based Mohr-Coulomb model has been developed [3,8]. However, it
distinguishes between granular friction and inter-particle friction, and uses
the former without providing a physical mechanism. Albert, {\em et al.} [2]
analyzed the geometric stability of grains on a pile's surface. The
frictionless model for dry particles is in excellent agreement with experiment.
But, their model for wet grains overestimates stability and predicts no
dependence on system size. Using the frictionless model and performing
stability analysis within the pile, we reproduce the dependence of the
stability angle on system size, particle size, and surface tension observed in
our experiments. Additionally, we account for past discrepancies in
experimental reports by showing that sidewalls can significantly increase the
stability of granular material.Comment: 4 pages, 4 figure
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
