74 research outputs found
Reply: Thymidylate synthase polymorphism and survival of colorectal cancer patients treated with 5-fluorouracil
British Journal of Cancer (2002) 86, 1366. DOI: 10.1038/sj/bjc/6600230 www.bjcancer.co
Identification of gene polymorphisms of human DNA topoisomerase I in the National Cancer Institute panel of human tumour cell lines
Topoisomerase 1 (Top1), a nuclear enzyme involved in DNA relaxation, is the target of several anticancer drugs. TOP1 mutations occur in camptothecin-resistant tumour cell lines. We explored, in the NCI panel of 60 human tumour cell lines, whether polymorphic variations in the TOP1 gene could explain differences in drug sensitivity. The 21 exons of the gene were fully studied as well as five intronic domains that had previously been shown to harbour single nucleotide polymorphisms (SNPs) or mutations. PCR products covering the whole exonic sequences or the relevant intronic domains were subjected to denaturing high-performance liquid chromatography. Nucleotide variations were then determined by sequencing. Discrimination between intronic common and variant homozygous samples was performed using a restriction fragment length polymorphism technique. Only one exonic mutation was detected, at the heterozygous state; it occurs in exon 19 of a colon cancer cell line (HCT-15) and consists of a G>A transition at position 75, resulting in a Met675Ile change. The intronic sequences studied harboured the SNPs expected with allelic frequencies between 20 and 40%. Three major haplotypes, generating 92% of the 10 genotypes encountered, were defined as containing none of the intronic SNPs, or three of them, or all of them. No significant relationship was evidenced between Top1 expression and the TOP1 polymorphisms studied. However, when comparing the cytotoxicity of 138 drugs as a function of the genotypes, several drug groups, namely Top1 inhibitors, antifolates and taxanes, had significantly different IC50s as a function of the distribution of the intronic SNPs of the TOP1 gene
UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy
BACKGROUND: The impact of thymidylate synthase (TYMS) and UDP-glucoronosyltransferase 1A (UGT1A) germline polymorphisms on the outcome of colorectal cancer (CRC) patients treated with irinotecan plus 5-fluorouracil (irinotecan/5FU) is still controversial. Our objective was to define a genetic-based algorithm to select patients to be treated with irinotecan/5FU. METHODS: Genotyping of TYMS (5'TRP and 3'UTR), UGT1A1*28, UGT1A9*22 and UGT1A7*3 was performed in 149 metastatic CRC patients treated with irinotecan/5FU as first-line chemotherapy enrolled in a randomised phase 3 study. Their association with response, toxicity and survival was investigated by univariate and multivariate statistical analysis. RESULTS: TYMS 3TRP/3TRP genotype was the only independent predictor of tumour response (OR=5.87, 95% confidence interval (CI)=1.68-20.45; P=0.005). UGT1A1*28/*28 was predictive for haematologic toxicity (OR=6.27, 95% CI=1.09-36.12; P=0.04), specifically for neutropenia alone (OR=6.40, 95% CI=1.11-37.03; P=0.038) or together with diarrhoea (OR=18.87, 95% CI=2.14-166.67; P=0.008). UGT1A9*1/*1 was associated with non-haematologic toxicity (OR=2.70, 95% CI=1.07-6.82; P=0.035). Haplotype VII (all non-favourable alleles) was associated with non-haematologic toxicity (OR=2.11, 95% CI-1.12-3.98; P-0.02). CONCLUSION: TYMS and UGT1A polymorphisms influence on tumour response and toxicities derived from irinotecan/5FU treatment in CRC patients. A genetic-based algorithm to optimise treatment individualisation is proposed. British Journal of Cancer (2010) 103, 581-589. doi:10.1038/sj.bjc.6605776 www.bjcancer.com Published online 13 July 2010 (C) 2010 Cancer Research U
Liver-only metastatic colorectal cancer patients and thymidylate synthase polymorphisms for predicting response to 5-fluorouracil-based chemotherapy
We investigated the association between thymidylate synthase (TS) germline polymorphisms and response to 5-fluorouracil-based chemotherapy in 80 patients with liver-only metastatic colorectal cancer (MCRC). The tandem repeat polymorphism (VNTR) in TS 5′-untranslated region (5′-UTR), which consists of two (2R) or three (3R) 28-bp repeated sequences, with or without a G/C nucleotide change in 3R carriers (3G or 3C) and a 6-bp insertion/deletion (6+/6−) in the TS 3′-UTR, was studied. The distinction between high (2R/3G, 3C/3G and 3G/3G) and low (2R/2R, 2R/3C and 3C/3C) TS expression genotypes according to the 5′-UTR VNTR+G/C nucleotide change showed significant association with tumour response (P=0.01). In particular, high TS expression genotypes were found in 8 out of 34 patients (23.5%) with complete or partial response and in 24 out of 46 patients (52%) with stable disease and disease progression. Liver-only MCRC patients are a homogeneous and clinical relevant subgroup that may represent an ideal setting for studying the actual influence of TS polymorphisms
Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity
Analysis of Polymorphisms and Haplotype Structure of the Human Thymidylate Synthase Genetic Region: A Tool for Pharmacogenetic Studies
5-fluorouracil (5FU), a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms). Prior studies implicated a VNTR (variable numbers of tandem repeats) polymorphism in the 5′-untranslated region (5′-UTR) of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T) repeats and novel single nucleotide polymorphisms (SNPs) flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt), polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing
Thymidylate synthase polymorphisms, folate and B-vitamin intake, and risk of colorectal adenoma
The effects of polymorphisms in genes coding for key folate metabolism enzymes such as thymidylate synthetase (TS) on colorectal neoplasia risk are likely to be influenced by gene–gene and gene–nutrient interactions. We investigated the combined effects of three polymorphisms in the TS gene region, TSER, TS 3R G>C, and TS 1494del6, dietary intakes of folate and other B vitamins, and genotype for other folate metabolism variants, in a colorectal adenoma (CRA) case–control study. Individuals homozygous for TS 1494del6 del/del were at significantly reduced CRA risk compared to those with either ins/del or ins/ins genotypes (odds ratio 0.52; 95% confidence interval: 0.31–0.85, P=0.009). We also observed evidence of interactions between TS 1494del6 genotype and intake of folate, and vitamins B6 and B12, and MTHFR C677T genotype, with the reduction in risk in del/del homozygotes being largely confined to individuals with high nutrient intakes and MTHFR 677CC genotype (Pinteraction=0.01, 0.006, 0.03, and 0.07, respectively). TSER genotype, when considered either alone or in combination with TS 3R G>C genotype, did not significantly influence CRA risk. These findings support a role for TS in colorectal carcinogenesis, and provide further evidence that functional polymorphisms in folate metabolism genes act as low-risk alleles for colorectal neoplasia and participate in complex gene–gene and gene–nutrient interactions
Modified FOLFOX-6 chemotherapy in advanced gastric cancer: Results of phase II study and comprehensive analysis of polymorphisms as a predictive and prognostic marker
<p>Abstract</p> <p>Background</p> <p>The objective of this study was to evaluate the efficacy and toxicity of infusional 5-fluorouracil (5-FU), folinic acid and oxaliplatin (modified FOLFOX-6) in patients with advanced gastric cancer (AGC), as first-line palliative combination chemotherapy. We also analyzed the predictive or prognostic value of germline polymorphisms of candidate genes associated with 5-FU and oxaliplatin.</p> <p>Methods</p> <p>Seventy-three patients were administered a 2 hour infusion of oxaliplatin (100 mg/m<sup>2</sup>) and folinic acid (100 mg/m<sup>2</sup>) followed by a 46 hour continuous infusion of 5-FU (2,400 mg/m<sup>2</sup>). Genomic DNA from the patients' peripheral blood mononuclear cells was extracted. Ten polymorphisms within five genes were investigated including TS, GSTP, ERCC, XPD and XRCC.</p> <p>Results</p> <p>The overall response rate (RR) was 43.8%. Median time to progression (TTP) and overall survival (OS) were 6.0 months and 12.6 months, respectively. Toxicities were generally tolerable and manageable. The RR was significantly higher in patients with a 6-bp deletion homozygote (-6 bp/-6 bp) in TS-3'UTR (55.0% <it>vs</it>. 30.3% in +6 bp/+6 bp or +6 bp/-6 bp, <it>p </it>= 0.034), and C/A or A/A in XPD156 (52.0% <it>vs</it>. 26.1% in C/C, <it>p </it>= 0.038). The -6 bp/-6 bp in TS-3'UTR was significantly associated with a prolonged TTP and OS. In a multivariate analysis, the 6-bp deletion in TS-3'UTR was identified as an independent prognostic marker of TTP (hazard ratio = 0.561, <it>p </it>= 0.032).</p> <p>Conclusion</p> <p>Modified FOLFOX-6 chemotherapy appears to be active and well tolerated as first line chemotherapy in AGC patients. The 6-bp deletion in TS-3'UTR might be a candidate to select patients who are likely to benefit from 5-FU based modified FOLFOX-6 in future large scale trial.</p
ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: A preliminary study
<p>Abstract</p> <p>Background</p> <p>Early relapse in colorectal cancer (CRC) patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage) and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes.</p> <p>Methods</p> <p>Six gene polymorphisms functional in drug-metabolism – <it>GSTP1 </it>Ile105Val, <it>ABCB1 </it>Ile1145Ile, <it>MTHFR </it>Ala222Val, <it>TYMS </it>double (2R) or triple (3R) tandem repeat – and DNA-repair genes – <it>ERCC2 </it>Lys751Gln and <it>XRCC1 A</it>rg399Gln – were assessed in 201 CRC patients using a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) technique and DNA sequencing. Patients were diagnosed as either high-risk stage II (T2 and 3 N0 M0) or III (any T N1 and 2 M0) and were administered adjuvant chemotherapy regimens that included 5-fluorouracil (5FU) and leucovorin (LV). The correlations between genetic polymorphisms and patient clinicopathological features and relapses were investigated.</p> <p>Results</p> <p>In this study, the distributions of <it>GSTP1 </it>(<it>P </it>= 0.003), <it>ABCB1 </it>(<it>P </it>= 0.001), <it>TYMS </it>(<it>P </it>< 0.0001), <it>ERCC2 </it>(<it>P </it>< 0.0001) and <it>XRCC1 </it>(<it>P </it>= 0.006) genotypes in the Asian population, with the exception of <it>MTHFR </it>(<it>P </it>= 0.081), differed significantly from their distributions in a Caucasian population. However, the unfavorable genotype <it>ERCC2 </it>2251A>C (<it>P </it>= 0.006), tumor invasion depth (<it>P </it>= 0.025), lymph node metastasis (<it>P </it>= 0.011) and cancer stage (<it>P </it>= 0.008) were significantly correlated with early relapse. Patients carrying the <it>ERCC2 </it>2251AC or2251CC genotypes had a significantly increased risk of early relapse (OR = 3.294, 95% CI, 1.272–8.532).</p> <p>Conclusion</p> <p>We suggest that <it>ERCC2 </it>2251A>C alleles may be genetic predictors of early CRC relapse.</p
Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS) – novel predictors for response and survival in gastric cancer patients
To evaluate the predictive value of a panel of gene polymorphisms involved in metabolism of 5-FU and cisplatin on clinical outcome in advanced gastric cancer patients. A total of 52 patients were enrolled in this study. DNA was extracted from paraffin-embedded tumour specimen. Genotypes were determined using PCR-RFLP. Median survival time was 6.0 months (95% CI 3.9;8.1). Overall response rate was 26%. Patients possessing the glutathione S-transferase P1-105 Valine/Valine (GSTP1-105VV) genotype showed a response rate of 67% compared to 21% in patients harbouring at least one GSTP1-105 Isoleucine (GSTP1-105I) allele (P=0.038). GSTP1-105VV patients demonstrated a significant superior median survival time of 15.0 months (95% CI 7.8;22.0) compared to 6.0 months (95% CI 5.1;7.0) in patients with at least one GSTP1-105I allele (P=0.037). Patients possessing a favourable thymidylate synthase (TS) genotype (2R/2R, 2R/3RC, 3RC/3RC) experienced a superior survival time of 10.2 months (95% CI 5.1;15.3) compared to 6.0 months (95% CI 5.0;7.0) in patients with unfavourable TS genotypes (P=0.099). Patients harbouring the GSTP1-105II genotype and one of the unfavourable TS genotypes showed an inferior median survival time of 6.0 months (95% CI 3.9;8.1) compared to 11 months (95% CI 6,23;15,77) in patients with either GSTP1-105VV or a favourable TS genotype (P=0.044). Testing for TS and GSTP1 polymorphisms may allow identification of gastric cancer patients who will benefit from 5-FU/cisplatin chemotherapy, sparing others the side effects of this chemotherapy
- …
