9,494 research outputs found
Linearons: highly non-instantaneous solitons in liquid-core photonic crystal fibers
The nonlinear propagation of light pulses in liquid-filled photonic crystal
fibers is considered. Due to the slow reorientational nonlinearity of some
molecular liquids, the nonlinear modes propagating inside such structures can
be approximated, for pulse durations much shorter than the molecular relaxation
time, by temporally highly-nonlocal solitons, analytical solutions of a linear
Schroedinger equation. The physical relevance of these novel solitary
structures, which may have a broad range of applications, is discussed and
supported by detailed numerical simulations.Comment: 4 pages, 3 figure
Recommended from our members
Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene.
Hedgehog signaling is often activated in tumors, yet it remains unclear how GLI2, a transcription factor activated by this pathway, acts as an oncogene. We show that GLI2 is a pleiotropic oncogene. The overexpression induces genomic instability and blocks differentiation, likely mediated in part by enhanced expression of the stem cell gene SOX2. GLI2 also induces transforming growth factor (TGF)B1-dependent transdifferentiation of foreskin and tongue, but not gingival fibroblasts into myofibroblasts, creating an environment permissive for invasion by keratinocytes, which are in various stages of differentiation having downregulated GLI2. Thus, upregulated GLI2 expression is sufficient to induce a number of the acquired characteristics of tumor cells; however, the stroma, in a tissue-specific manner, determines whether certain GLI2 oncogenic traits are expressed
A search for transit timing variation
Photometric follow-ups of transiting exoplanets (TEPs) may lead to
discoveries of additional, less massive bodies in extrasolar systems. This is
possible by detecting and then analysing variations in transit timing of
transiting exoplanets. In 2009 we launched an international observing campaign,
the aim of which is to detect and characterise signals of transit timing
variation (TTV) in selected TEPs. The programme is realised by collecting data
from 0.6--2.2-m telescopes spread worldwide at different longitudes. We present
our observing strategy and summarise first results for WASP-3b with evidence
for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.Comment: Poster contribution to Detection and Dynamics of Transiting
Exoplanets (Haute Provence Observatory Colloquium, 23-27 August 2010
Black hole evaporation in a spherically symmetric non-commutative space-time
Recent work in the literature has studied the quantum-mechanical decay of a
Schwarzschild-like black hole, formed by gravitational collapse, into
almost-flat space-time and weak radiation at a very late time. The relevant
quantum amplitudes have been evaluated for bosonic and fermionic fields,
showing that no information is lost in collapse to a black hole. On the other
hand, recent developments in noncommutative geometry have shown that, in
general relativity, the effects of non-commutativity can be taken into account
by keeping the standard form of the Einstein tensor on the left-hand side of
the field equations and introducing a modified energy-momentum tensor as a
source on the right-hand side. Relying on the recently obtained
non-commutativity effect on a static, spherically symmetric metric, we have
considered from a new perspective the quantum amplitudes in black hole
evaporation. The general relativity analysis of spin-2 amplitudes has been
shown to be modified by a multiplicative factor F depending on a constant
non-commutativity parameter and on the upper limit R of the radial coordinate.
Limiting forms of F have been derived which are compatible with the adiabatic
approximation.Comment: 8 pages, Latex file with IOP macros, prepared for the QFEXT07
Conference, Leipzig, September 200
Center to limb variation of penumbral Stokes V profiles
We investigated the horizontal and the vertical component of the Evershed
flow (EF). To this end, we computed average Stokes V profiles for various
velocity classes in penumbrae at different heliocentric angles. Our results
show that for blueshifted profiles an additional lobe with the same polarity as
the spot is present in the blue side of the average Stokes V profile. The
amplitude of the additional lobe grows with increasing blueshift and with
increasing heliocentric angle. For small redshifts, the profiles show an
additional lobe with the opposite polarity as the spot on the red side of the
average Stokes V profile. Even at disk center, the original polarity of the
average Stokes V profile is reversed for strong redshifts. The transition
between the different types of Stokes V profiles is continuous and indicates
that not only the vertical, but also the horizontal EF is a magnetized stream
of plasma in a magnetic background field
No variations in transit times for Qatar-1 b
The transiting hot Jupiter planet Qatar-1 b was presented to exhibit
variations in transit times that could be of perturbative nature. A hot Jupiter
with a planetary companion on a nearby orbit would constitute an unprecedented
planetary configuration, important for theories of formation and evolution of
planetary systems. We performed a photometric follow-up campaign to confirm or
refute transit timing variations. We extend the baseline of transit
observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m
telescopes. These photometric time series, together with data available in the
literature, were analyzed in a homogenous way to derive reliable transit
parameters and their uncertainties. We show that the dataset of transit times
is consistent with a linear ephemeris leaving no hint for any periodic
variations with a range of 1 min. We find no compelling evidence for the
existence of a close-in planetary companion to Qatar-1 b. This finding is in
line with a paradigm that hot Jupiters are not components of compact
multi-planetary systems. Based on dynamical simulations, we place tighter
constraints on a mass of any fictitious nearby planet in the system.
Furthermore, new transit light curves allowed us to redetermine system
parameters with the precision better than that reported in previous studies.
Our values generally agree with previous determinations.Comment: Accepted for publication in A&
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
Transmission of UV light with high beam quality and pointing stability is
desirable for many experiments in atomic, molecular and optical physics. In
particular, laser cooling and coherent manipulation of trapped ions with
transitions in the UV require stable, single-mode light delivery. Transmitting
even ~2 mW CW light at 280 nm through silica solid-core fibers has previously
been found to cause transmission degradation after just a few hours due to
optical damage. We show that photonic crystal fiber of the kagom\'e type can be
used for effectively single-mode transmission with acceptable loss and bending
sensitivity. No transmission degradation was observed even after >100 hours of
operation with 15 mW CW input power. In addition it is shown that
implementation of the fiber in a trapped ion experiment significantly increases
the coherence times of the internal state transfer due to an increase in beam
pointing stability
Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires
We demonstrate analytically and numerically that a subwavelength-core
dielectric photonic nanowire embedded in a properly designed photonic crystal
fiber cladding shows evidence of a previously unknown kind of nonlinearity (the
magnitude of which is strongly dependent on the waveguide parameters) which
acts on solitons so as to considerably reduce their Raman self-frequency shift.
An explanation of the phenomenon in terms of indirect pulse negative chirping
and broadening is given by using the moment method. Our conclusions are
supported by detailed numerical simulations.Comment: 5 pages, 3 figure
An ion trap built with photonic crystal fibre technology
We demonstrate a surface-electrode ion trap fabricated using techniques
transferred from the manufacture of photonic-crystal fibres. This provides a
relatively straightforward route for realizing traps with an electrode
structure on the 100 micron scale with high optical access. We demonstrate the
basic functionality of the trap by cooling a single ion to the quantum ground
state, allowing us to measure a heating rate from the ground state of 787(24)
quanta/s. Variation of the fabrication procedure used here may provide access
to traps in this geometry with trap scales between 100 um and 10 um.Comment: 6 pages, 4 figure
Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region
We report on observation and determination of rotational periods of ten
weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region.
Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at
University Observatory Jena between 2007 June and 2008 May. The periods
obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri
stars.Comment: 11 pages, 26 figures, accepted to be published in A
- …
