32,851 research outputs found
A heater made from graphite composite material for potential deicing application
A surface heater was developed using a graphite fiber-epoxy composite as the heating element. This heater can be thin, highly electrically and thermally conductive, and can conform to an irregular surface. Therefore it may be used in an aircraft's thermal deicing system to quickly and uniformly heat the aircraft surface. One-ply of unidirectional graphite fiber-epoxy composite was laminated between two plies of fiber glass-epoxy composite, with nickel foil contacting the end portions of the composite and partly exposed beyond the composites for electrical contact. The model heater used brominated P-100 fibers from Amoco. The fiber's electrical resistivity, thermal conductivity and density were 50 micro ohms per centimeter, 270 W/m-K and 2.30 gm/cubic cm, respectively. The electricity was found to penetrate through the composite in the transverse direction to make an acceptably low foil-composite contact resistance. When conducting current, the heater temperature increase reached 50 percent of the steady state value within 20 sec. There was no overheating at the ends of the heater provided there was no water corrosion. If the foil-composite bonding failed during storage, liquid water exposure was found to oxidize the foil. Such bonding failure may be avoided if perforated nickel foil is used, so that the composite plies can bond to each other through the perforated holes and therefore lock the foil in place
Oscillations of the Eddington Capture Sphere
We present a toy model of mildly super-Eddington, optically thin accretion
onto a compact star in the Schwarzschild metric, which predicts periodic
variations of luminosity when matter is supplied to the system at a constant
accretion rate. These are related to the periodic appearance and disappearance
of the Eddington Capture Sphere. In the model the frequency is found to vary
inversely with the luminosity. If the input accretion rate varies (strictly)
periodically, the luminosity variation is quasi-periodic, and the quality
factor is inversely proportional to the relative amplitude of mass accretion
fluctuations, with its largest value approximately Q= 1/(10 |delta Mdot/Mdot|)
attained in oscillations at about 1 to 2 kHz frequencies for a 2 solar mass
star
Synchrotron radiation from a runaway electron distribution in tokamaks
The synchrotron radiation emitted by runaway electrons in a fusion plasma
provides information regarding the particle momenta and pitch-angles of the
runaway electron population through the strong dependence of the synchrotron
spectrum on these parameters. Information about the runaway density and its
spatial distribution, as well as the time evolution of the above quantities,
can also be deduced. In this paper we present the synchrotron radiation spectra
for typical avalanching runaway electron distributions. Spectra obtained for a
distribution of electrons are compared to the emission of mono-energetic
electrons with a prescribed pitch-angle. We also examine the effects of
magnetic field curvature and analyse the sensitivity of the resulting spectrum
to perturbations to the runaway distribution. The implications for the deduced
runaway electron parameters are discussed. We compare our calculations to
experimental data from DIII-D and estimate the maximum observed runaway energy.Comment: 22 pages, 12 figures; updated author affiliations, fixed typos, added
a sentence at the end of section I
Escape, capture, and levitation of matter in Eddington outbursts
Context: An impulsive increase in luminosity by one half or more of the
Eddington value will lead to ejection of all optically thin plasma from
Keplerian orbits around the radiating star, if gravity is Newtonian and the
Poynting-Robertson drag is neglected. Radiation drag may bring some particles
down to the stellar surface. On the other hand, general relativistic
calculations show that gravity may be balanced by a sufficiently intense
radiation field at a certain distance from the star.
Aims: We investigate the motion of test particles around highly luminous
stars to determine conditions under which plasma may be ejected from the
system.
Results: In Einstein's gravity, if the outburst is close to the Eddington
luminosity, all test particles orbiting outside an "escape sphere" will be
ejected from the system, while all others will be captured from their orbits
onto the surface of another sphere, which is well above the stellar surface,
and may even be outside the escape sphere, depending on the value of
luminosity. Radiation drag will bring all the captured particles to rest on
this "Eddington capture sphere," where they will remain suspended in an
equilibrium state as long as the local flux of radiation does not change and
remains at the effective Eddington value.Comment: 6 pages, 6 figures. To be published in Astronomy and Astrophysic
Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc
We present evidence for the formation of dust grains in an unusual Type Ib SN
based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like
outburst just 2 yr earlier, and we propose that the dust formation is a
consequence of the SN blast wave overtaking that LBV-like shell. The key
evidence for dust formation is (a) the appearance of a red/near-IR continuum
source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of
He I emission lines, yielding progressively more asymmetric blueshifted lines
as dust obscures receding material. This provides the strongest case yet for
dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d
after peak, while other SNe observed to form dust did so after a few hundred
days. Geometric considerations indicate that dust formed in the dense swept-up
shell between the forward and reverse shocks, and not in the freely expanding
SN ejecta. Rapid cooling leading to dust formation may have been aided by
extremely high shell densities, as indicated by He I line ratios. The brief
epoch of dust formation is accompanied by He II 4686 emission and enhanced
X-ray emission. These clues suggest that the unusual dust formation in this
object was not due to properties of the SN itself, but instead -- like most
peculiarities of SN 2006jc -- was a consequence of the dense environment
created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title,
conclusions same as previous version. 12 pages, 4 color fig
Möglichkeiten der systemischen Therapie in metastasierten Stadien des Magenkarzinoms
Zusammenfassung: Die Ergebnisse mehrerer, in letzter Zeit publizierter Phase-III-Studien haben die therapeutischen Möglichkeiten in der Behandlung des metastasierten Magenkarzinoms deutlich erweitert. Die Dauerinfusion von 5-Fluorouracil (5-FU) kann ohne Verlust an Wirkung durch Capecitabin ersetzt werden, ebenso wie Cisplatin durch Oxaliplatin. Nach den Ergebnissen der REAL-2-Studie zeigt die Kombination aus Epirubicin, Oxaliplatin und Capecitabin (EOX) eine Verbesserung des Gesamtüberlebens (9,9 vs. 11,2Monate; HR 0,8) im Vergleich zu Epirubicin, Cisplatin und 5-FU (ECF). Die Frage, ob in der First-Line-Therapie eine Dreifachkombination oder eine Zweifachkombination eingesetzt werden sollte, ist allerdings weiterhin umstritten. Die Kombination aus Irinotecan und 5-FU stellt für solche Patienten, bei denen aufgrund von Komorbiditäten eine platinfreie Therapie bevorzugt wird, eine Alternative zur Kombination Cisplatin/5-FU dar. Docetaxel, 5-FU und Cisplatin (DCF) hat sich bezüglich des Überlebens in einer randomisierten Phase-III-Studie als statistisch signifikant überlegen erwiesen, allerdings besteht eine ausgeprägte hämatologische Toxizität, welche die Anwendbarkeit insbesondere bei den häufig älteren Patienten mit einem Magenkarzinom limitiert. Randomisierte Phase-III-Studien zum Vergleich von DCF mit anderen Dreierkombinationen, wie z.B. EOX, stehen au
Journal Club: surveillance neuroimaging and neurologic examinations affect care for intracerebral hemorrhage
The article “Surveillance neuroimaging and neurologic examinations affect care for intracerebral hemorrhage”1 is reviewed. This review focuses on the methods, results, and limitations and merits of the original article
Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap.
Penning traps offer unique possibilities for storing, manipulating and investigating charged particles with high sensitivity and accuracy. The widespread applications of Penning traps in physics and chemistry comprise e.g. mass spectrometry, laser spectroscopy, measurements of electronic and nuclear magnetic moments, chemical sample analysis and reaction studies. We have developed a method, based on the Green's function approach, which allows for the analytical calculation of the electrostatic properties of a Penning trap with arbitrary electrodes. The ansatz features an extension of Dirichlet's problem to nontrivial geometries and leads to an analytical solution of the Laplace equation. As an example we discuss the toroidal hybrid Penning trap designed for our planned measurements of the magnetic moment of the (anti)proton. As in the case of cylindrical Penning traps, it is possible to optimize the properties of the electric trapping fields, which is mandatory for high-precision experiments with single charged particles. Of particular interest are the anharmonicity compensation, orthogonality and optimum adjustment of frequency shifts by the continuous SternGerlach effect in a quantum jump spectrometer. The mathematical formalism developed goes beyond the mere design of novel Penning traps and has potential applications in other fields of physics and engineering
Dynamical mass of the O-type supergiant in Zeta Orionis A
A close companion of Zeta Orionis A was found in 2000 with the Navy Precision
Optical Interferometer (NPOI), and shown to be a physical companion. Because
the primary is a supergiant of type O, for which dynamical mass measurements
are very rare, the companion was observed with NPOI over the full 7-year orbit.
Our aim was to determine the dynamical mass of a supergiant that, due to the
physical separation of more than 10 AU between the components, cannot have
undergone mass exchange with the companion. The interferometric observations
allow measuring the relative positions of the binary components and their
relative brightness. The data collected over the full orbital period allows all
seven orbital elements to be determined. In addition to the interferometric
observations, we analyzed archival spectra obtained at the Calar Alto, Haute
Provence, Cerro Armazones, and La Silla observatories, as well as new spectra
obtained at the VLT on Cerro Paranal. In the high-resolution spectra we
identified a few lines that can be associated exclusively to one or the other
component for the measurement of the radial velocities of both. The combination
of astrometry and spectroscopy then yields the stellar masses and the distance
to the binary star. The resulting masses for components Aa of 14.0 solar masses
and Ab of 7.4 solar masses are low compared to theoretical expectations, with a
distance of 294 pc which is smaller than a photometric distance estimate of 387
pc based on the spectral type B0III of the B component. If the latter (because
it is also consistent with the distance to the Orion OB1 association) is
adopted, the mass of the secondary component Ab of 14 solar masses would agree
with classifying a star of type B0.5IV. It is fainter than the primary by about
2.2 magnitudes in the visual. The primary mass is then determined to be 33
solar masses
- …
