2,643 research outputs found
Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model
We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four
different techniques (three numerical and one analytical). Polarons show a
smooth crossover from weak to strong coupling, as a function of the
electron-phonon coupling strength , in all models where this coupling
depends only on phonon momentum . In the SSH model the coupling also depends
on the electron momentum ; we find it has a sharp transition, at a critical
coupling strength , between states with zero and nonzero momentum of
the ground state. All other properties of the polaron are also singular at
, except the average number of phonons in the polaronic
cloud. This result is representative of all polarons with coupling depending on
and , and will have important experimental consequences (eg., in ARPES
and conductivity experiments)
Quantum Dynamics of a Bose Superfluid Vortex
We derive a fully quantum-mechanical equation of motion for a vortex in a
2-dimensional Bose superfluid, in the temperature regime where the normal fluid
density is small. The coupling between the vortex "zero mode" and
the quasiparticles has no term linear in the quasiparticle variables -- the
lowest-order coupling is quadratic. We find that as a function of the
dimensionless frequency , the standard
Hall-Vinen/Iordanskii equations are valid when (the
"classical regime"), but elsewhere, the equations of motion become highly
retarded, with significant experimental implications when .Comment: 12 pages (4 pages + supp info), 2 figures, accepted to PR
Charge-Spin Separation in 2D Fermi Systems: Singular Interactions as Modified Commutators, and Solution of 2D Hubbard Model in Bosonized Approximation
The general 2-dimensional fermion system with repulsive interactions
(typified by the Hubbard Model) is bosonized, taking into account the finite
on-shell forward scattering phase shift derived in earlier papers. By taking
this phase shift into account in the bosonic commutation relations a consistent
picture emerges showing the charge-spin separation and anomalous exponents of
the Luttinger liquid.Comment: Latex file 14 pages. email: [email protected]
Quantum Relaxation of Magnetisation in Magnetic Particles
At temperatures below the magnetic anisotropy energy, monodomain magnetic
systems (small particles, nanomagnetic devices, etc.) must relax quantum
mechanically. This quantum relaxation must be mediated by the coupling to both
nuclear spins and phonons (and electrons if either particle or substrate is
conducting. We analyze the effect of each of these couplings, and then combine
them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with
nuclear spins added in as well. At low temperatures, even microscopic particles
on a conducting substrate (containing only spins) will have their
magnetisation frozen over millenia by a combination of electronic dissipation
and the "degeneracy blocking" caused by nuclear spins. Raising the temperature
leads to a sudden unblocking of the spin dynamics at a well defined
temperature. Insulating systems are quite different. The relaxation is strongly
enhanced by the coupling to nuclear spins. At short times the magnetisation of
an ensemble of particles relaxes logarithmically in time, after an initial very
fast decay; this relaxation proceeds entirely via the nuclear spins. At longer
times phonons take over, but the decay rate is still governed by the
temperature-dependent nuclear bias field acting on the particles - decay may be
exponential or power-law depending on the temperature. The most surprising
feature of the results is the pivotal role played by the nuclear spins. The
results are relevant to any experiments on magnetic particles in which
interparticle dipolar interactions are unimportant. They are also relevant to
future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low
Temp.Phys. on 1 Nov. 199
Suppression of tunneling by interference in half-integer--spin particles
Within a wide class of ferromagnetic and antiferromagnetic systems, quantum
tunneling of magnetization direction is spin-parity dependent: it vanishes for
magnetic particles with half-integer spin, but is allowed for integer spin. A
coherent-state path integral calculation shows that this topological effect
results from interference between tunneling paths.Comment: 14 pages (RevTeX), 2 postscript figures available upon reques
On the Stability and Single-Particle Properties of Bosonized Fermi Liquids
We study the stability and single-particle properties of Fermi liquids in
spatial dimensions greater than one via bosonization. For smooth non-singular
Fermi liquid interactions we obtain Shankar's renormalization- group flows and
reproduce well known results for quasi-particle lifetimes. We demonstrate by
explicit calculation that spin-charge separation does not occur when the Fermi
liquid interactions are regular. We also explore the relationship between
quantized bosonic excitations and zero sound modes and present a concise
derivation of both the spin and the charge collective mode equations. Finally
we discuss some aspects of singular Fermi liquid interactions.Comment: 13 pages plus three postscript figures appended; RevTex 3.0;
BUP-JBM-
Quantum Walks, Quantum Gates and Quantum Computers
The physics of quantum walks on graphs is formulated in Hamiltonian language,
both for simple quantum walks and for composite walks, where extra discrete
degrees of freedom live at each node of the graph. It is shown how to map
between quantum walk Hamiltonians and Hamiltonians for qubit systems and
quantum circuits; this is done for both a single- and multi-excitation coding,
and for more general mappings. Specific examples of spin chains, as well as
static and dynamic systems of qubits, are mapped to quantum walks, and walks on
hyperlattices and hypercubes are mapped to various gate systems. We also show
how to map a quantum circuit performing the quantum Fourier transform, the key
element of Shor's algorithm, to a quantum walk system doing the same. The
results herein are an essential preliminary to a Hamiltonian formulation of
quantum walks in which coupling to a dynamic quantum environment is included.Comment: 17 pages, 10 figure
Macroscopic Quantum Tunneling of a Domain Wall in a Ferromagnetic Metal
The macroscopic quantum tunneling of a planar domain wall in a ferromagnetic
metal is studied based on the Hubbard model. It is found that the ohmic
dissipation is present even at zero temperature due to the gapless Stoner
excitation, which is the crucial difference from the case of the insulating
magnet. The dissipative effect is calculated as a function of width of the wall
and is shown to be effective in a thin wall and in a weak ferromagnet. The
results are discussed in the light of recent experiments on ferromagnets with
strong anisotropy. PACS numbers:75.60.Ch, 03.65.Sq, 75.10.LpComment: 13page
Quantum Thermoactivation of Nanoscale Magnets
The integral relaxation time describing the thermoactivated escape of a
uniaxial quantum spin system interacting with a boson bath is calculated
analytically in the whole temperature range. For temperatures T much less than
the barrier height \Delta U, the level quantization near the top of the barrier
and the strong frequency dependence of the one-boson transition probability can
lead to the regularly spaced deep minima of the thermoactivation rate as a
function of the magnetic field applied along the z axis.Comment: 4 pages, no figures, rejected from Phys. Rev. Let
- …
