116 research outputs found

    A comparison of third-generation semi-invasive arterial waveform analysis with thermodilution in patients undergoing coronary surgery

    Get PDF
    Uncalibrated semi-invasive continous monitoring of cardiac index (CI) has recently gained increasing interest. The aim of the present study was to compare the accuracy of CI determination based on arterial waveform analysis with transpulmonary thermodilution. Fifty patients scheduled for elective coronary surgery were studied after induction of anaesthesia and before and after cardiopulmonary bypass (CPB), respectively. Each patient was monitored with a central venous line, the PiCCO system, and the FloTrac/Vigileo-system. Measurements included CI derived by transpulmonary thermodilution and uncalibrated semi-invasive pulse contour analysis. Percentage changes of CI were calculated. There was a moderate, but significant correlation between pulse contour CI and thermodilution CI both before (r(2) = 0.72, P < 0.0001) and after (r(2) = 0.62, P < 0.0001) CPB, with a percentage error of 31% and 25%, respectively. Changes in pulse contour CI showed a significant correlation with changes in thermodilution CI both before (r(2) = 0.52, P < 0.0001) and after (r(2) = 0.67, P < 0.0001) CPB. Our findings demonstrated that uncalibrated semi-invasive monitoring system was able to reliably measure CI compared with transpulmonary thermodilution in patients undergoing elective coronary surgery. Furthermore, the semi-invasive monitoring device was able to track haemodynamic changes and trends

    Defining the optimal animal model for translational research using gene set enrichment analysis

    Get PDF
    The mouse is the main model organism used to study the functions of human genes because most biological processes in the mouse are highly conserved in humans. Recent reports that compared identical transcriptomic datasets of human inflammatory diseases with datasets from mouse models using traditional gene‐to‐gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. To reduce susceptibility to biased interpretation, all genes of interest for the biological question under investigation should be considered. Thus, standardized approaches for systematic data analysis are needed. We analyzed the same datasets using gene set enrichment analysis focusing on pathways assigned to inflammatory processes in either humans or mice. The analyses revealed a moderate overlap between all human and mouse datasets, with average positive and negative predictive values of 48 and 57% significant correlations. Subgroups of the septic mouse models (i.e., Staphylococcus aureus injection) correlated very well with most human studies. These findings support the applicability of targeted strategies to identify the optimal animal model and protocol to improve the success of translational research

    Assessment of the effect of tricaine (MS-222)-induced anesthesia on brain-wide neuronal activity of zebrafish (Danio rerio) larvae

    Get PDF
    Fast and effective anesthesia is the key for refining many invasive procedures in fish and gaining reliable data. For fish as for all vertebrates, it is also required by European law to reduce pain, suffering, and distress to the unavoidable minimum in husbandry and experiments. The most often used substance to induce anesthesia in zebrafish is tricaine (MS-222). When properly prepared and dosed, tricaine causes rapid loss of mobility, balance and reaction to touch. These signs are interpreted as a stage of deep anesthesia although its effects on the central nervous system have not convincingly been shown. Therefore, it might be possible that tricaine first acts only on the periphery, resulting in a paralyzed instead of an anesthetized fish. This has severe implications for animals undergoing procedures. To investigate the effects of tricaine on the central nervous system, we used zebrafish larvae [Tg( elavl3 :H2B-GCaMP6s)] at 4 days post fertilization (dpf), expressing a calcium indicator (GCaMP6s) in all neurons, that allows monitoring and quantifying the neuronal activity. After treating larvae with 168 mg/L tricaine, a rapid loss of neuronal activity in the forebrain was observed in confocal microscopy. In contrast, only mild effects were seen in the midbrain and hindbrain. In conclusion, the different larval brain areas showed differences in the sensitivity to tricaine treatment. The effects on the central nervous system are indicative of tricaine’s anesthetic function and are consistent with behavioral observations of inactivity and unresponsiveness to touch

    Towards Systems Biology of Heterosis: A Hypothesis about Molecular Network Structure Applied for the Arabidopsis Metabolome

    Get PDF
    We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity—a known phenomenon in the literature

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    Procedure for indexing NTS with ICD-10 codes, published in German

    Get PDF
    The general public shall be informed about planned animal experiments by non-technical summaries (NTSs) as stipulated in the European Directive 2010/63/EU. In Germany, NTS are made available in the searchable, web-based database AnimalTestInfo. In our meta-analysis, we classified duly completed German NTSs submitted in 2014 and 2015 to AnimalTestInfo according to the ‘International Classification of Diseases and Related Health Problems’ (ICD) system. Here, we present the standardised procedure for indexing NTSs with ICD-10 codes in German

    Simulation of DNA array hybridization experiments and evaluation of critical parameters during subsequent image and data analysis

    Get PDF
    BACKGROUND: Gene expression analyses based on complex hybridization measurements have increased rapidly in recent years and have given rise to a huge amount of bioinformatic tools such as image analyses and cluster analyses. However, the amount of work done to integrate and evaluate these tools and the corresponding experimental procedures is not high. Although complex hybridization experiments are based on a data production pipeline that incorporates a significant amount of error parameters, the evaluation of these parameters has not been studied yet in sufficient detail. RESULTS: In this paper we present simulation studies on several error parameters arising in complex hybridization experiments. A general tool was developed that allows the design of exactly defined hybridization data incorporating, for example, variations of spot shapes, spot positions and local and global background noise. The simulation environment was used to judge the influence of these parameters on subsequent data analysis, for example image analysis and the detection of differentially expressed genes. As a guide for simulating expression data real experimental data were used and model parameters were adapted to these data. Our results show how measurement error can be balanced by the analysis tools. CONCLUSIONS: We describe an implemented model for the simulation of DNA-array experiments. This tool was used to judge the influence of critical parameters on the subsequent image analysis and differential expression analysis. Furthermore the tool can be used to guide future experiments and to improve performance by better experimental design. Series of simulated images varying specific parameters can be downloaded from our web-site: http://www.molgen.mpg.de/~lh_bioinf/projects/simulation/biotech

    The Extended Postoperative Care-Score (EXPO-Score)-An Objective Tool for Early Identification of Indication for Extended Postoperative Care

    Get PDF
    Extended postoperative care and intensive care unit capacity is limited and efficient patient allocation is mandatory. This study aims to develop an effective yet simple score to predict indication for extended postoperative care, as there is a lack of objective criteria for early prediction of admission to extended care in surgical patients. This prospective observational study was divided into two periods (Period 1: Extended Postoperative Care-Score (EXPO)-Score generation; Period 2: EXPO-Score validation) and it was performed at a tertiary university center in Germany. A total of 4042 (Period 1) and 2198 (Period 2) adult patients ≥ 18 years old receiving elective or emergency surgery were included in this study. After identifying patient- and surgery-related risk factors by an expert panel, the EXPO-Score was developed through logistic regression from data of Period 1 and validated in Period 2. Three risk factors are sufficient for generating a reliable predictive EXPO-Score: (1) the American Society of Anesthesiologists' (ASA) physical status, (2) cardiopulmonary physical exercise status expressed in metabolic equivalents (MET), and (3) the type of surgery. The score threshold (0.23) has a sensitivity of 0.87, a specificity of 0.91, and an accuracy of 0.90 for predicting indication for extended postoperative care. The EXPO-Score provides a validated, early collectable, and easy-to-use tool for predicting indication of extended postoperative care in adult surgical patients
    corecore