1,680 research outputs found

    Neutron-diffraction study of field-induced transitions in the heavy-fermion compound Ce2RhIn8

    Full text link
    We present neutron diffraction measurements in high magnetic fields (0 to 14.5 T) and at low temperatures (2.5, 2.3, 0.77 and 0.068 K) on single crystals of the tetragonal heavy fermion antiferromagnet Ce2RhIn8. For B//[110] the field dependence of selected magnetic and nuclear reflections reveals that the material undergoes several transitions, the temperature dependence of which suggests a complex B-T phase diagram. We present the detailed evolution of the integrated intensities of selected reflections and discuss the associated field-induced transitions.Comment: 12 pages, 3 figures Proceeding Euro-conference "Properties of Condensed Matter probed by x-ray and neutron scattering"; to appear in Physica

    Theory and experiment of the ESR of Co2+^{2+} in Zn2_2 % (OH)PO4_4 and Mg2_2(OH)AsO4_4

    Full text link
    Experiments of Electron Spin Resonance (ESR) were performed on Co% ^{2+} substituting Zn2+^{2+} or Mg2+^{2+} in powder samples of Zn2_2(OH)PO4_4 and Mg2_2(OH)AsO4_4. The observed resonances are described with a theoretical model that considers the departures from the two perfect structures. It is shown that the resonance in the penta-coordinated complex is allowed, and the crystal fields that would describe the resonance of the Co2+^{2+} in the two environments are calculated. The small intensity of the resonance in the penta-coordinated complex is explained assuming that this site is much less populated than the octahedral one; this assumption was verified by a molecular calculation of the energies of the two environments, with both Co and Zn as central ions in Zn2_2(OH)PO4_4.Comment: 43 pages, LaTex file, 6 figures, EPS. submitted to Journal of Physics Condens

    Non-spherical sources of static gravitational fields: investigating the boundaries of the no-hair theorem

    Full text link
    A new, globally regular model describing a static, non spherical gravitating object in General Relativity is presented. The model is composed by a vacuum Weyl--Levi-Civita special field - the so called gamma metric - generated by a regular static distribution of mass-energy. Standard requirements of physical reasonableness such as, energy, matching and regularity conditions are satisfied. The model is used as a toy in investigating various issues related to the directional behavior of naked singularities in static spacetimes and the blackhole (Schwarschild) limit.Comment: 10 pages, 2 figure

    A source of a quasi--spherical space--time: The case for the M--Q solution

    Full text link
    We present a physically reasonable source for an static, axially--symmetric solution to the Einstein equations. Arguments are provided, supporting our belief that the exterior space--time produced by such source, describing a quadrupole correction to the Schwarzschild metric, is particularly suitable (among known solutions of the Weyl family) for discussing the properties of quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR

    Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure

    Full text link
    The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity's optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase-locked to the first one and tuned close to a fundamental cavity mode drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure

    Stress tensor fluctuations in de Sitter spacetime

    Full text link
    The two-point function of the stress tensor operator of a quantum field in de Sitter spacetime is calculated for an arbitrary number of dimensions. We assume the field to be in the Bunch-Davies vacuum, and formulate our calculation in terms of de Sitter-invariant bitensors. Explicit results for free minimally coupled scalar fields with arbitrary mass are provided. We find long-range stress tensor correlations for sufficiently light fields (with mass m much smaller than the Hubble scale H), namely, the two-point function decays at large separations like an inverse power of the physical distance with an exponent proportional to m^2/H^2. In contrast, we show that for the massless case it decays at large separations like the fourth power of the physical distance. There is thus a discontinuity in the massless limit. As a byproduct of our work, we present a novel and simple geometric interpretation of de Sitter-invariant bitensors for pairs of points which cannot be connected by geodesics.Comment: 35 pages, 4 figure

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    Hilbert Expansion from the Boltzmann equation to relativistic Fluids

    Get PDF
    We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellian constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.Comment: 50 page

    Observed photodetachment in parallel electric and magnetic fields

    Full text link
    We investigate photodetachment from negative ions in a homogeneous 1.0-T magnetic field and a parallel electric field of approximately 10 V/cm. A theoretical model for detachment in combined fields is presented. Calculations show that a field of 10 V/cm or more should considerably diminish the Landau structure in the detachment cross section. The ions are produced and stored in a Penning ion trap and illuminated by a single-mode dye laser. We present preliminary results for detachment from S- showing qualitative agreement with the model. Future directions of the work are also discussed.Comment: Nine pages, five figures, minor revisions showing final publicatio

    Collisional equilibrium, particle production and the inflationary universe

    Get PDF
    Particle production processes in the expanding universe are described within a simple kinetic model. The equilibrium conditions for a Maxwell-Boltzmann gas with variable particle number are investigated. We find that radiation and nonrelativistic matter may be in equilibrium at the same temperature provided the matter particles are created at a rate that is half the expansion rate. Using the fact that the creation of particles is dynamically equivalent to a nonvanishing bulk pressure we calculate the backreaction of this process on the cosmological dynamics. It turns out that the `adiabatic' creation of massive particles with an equilibrium distribution for the latter necessarily implies power-law inflation. Exponential inflation in this context is shown to become inconsistent with the second law of thermodynamics after a time interval of the order of the Hubble time.Comment: 19 pages, latex, no figures, to appear in Phys.Rev.
    corecore