1,680 research outputs found
Neutron-diffraction study of field-induced transitions in the heavy-fermion compound Ce2RhIn8
We present neutron diffraction measurements in high magnetic fields (0 to
14.5 T) and at low temperatures (2.5, 2.3, 0.77 and 0.068 K) on single crystals
of the tetragonal heavy fermion antiferromagnet Ce2RhIn8. For B//[110] the
field dependence of selected magnetic and nuclear reflections reveals that the
material undergoes several transitions, the temperature dependence of which
suggests a complex B-T phase diagram. We present the detailed evolution of the
integrated intensities of selected reflections and discuss the associated
field-induced transitions.Comment: 12 pages, 3 figures Proceeding Euro-conference "Properties of
Condensed Matter probed by x-ray and neutron scattering"; to appear in
Physica
Theory and experiment of the ESR of Co in Zn % (OH)PO and Mg(OH)AsO
Experiments of Electron Spin Resonance (ESR) were performed on Co
substituting Zn or Mg in powder samples of Zn(OH)PO and
Mg(OH)AsO. The observed resonances are described with a theoretical
model that considers the departures from the two perfect structures. It is
shown that the resonance in the penta-coordinated complex is allowed, and the
crystal fields that would describe the resonance of the Co in the two
environments are calculated. The small intensity of the resonance in the
penta-coordinated complex is explained assuming that this site is much less
populated than the octahedral one; this assumption was verified by a molecular
calculation of the energies of the two environments, with both Co and Zn as
central ions in Zn(OH)PO.Comment: 43 pages, LaTex file, 6 figures, EPS. submitted to Journal of Physics
Condens
Non-spherical sources of static gravitational fields: investigating the boundaries of the no-hair theorem
A new, globally regular model describing a static, non spherical gravitating
object in General Relativity is presented. The model is composed by a vacuum
Weyl--Levi-Civita special field - the so called gamma metric - generated by a
regular static distribution of mass-energy. Standard requirements of physical
reasonableness such as, energy, matching and regularity conditions are
satisfied. The model is used as a toy in investigating various issues related
to the directional behavior of naked singularities in static spacetimes and the
blackhole (Schwarschild) limit.Comment: 10 pages, 2 figure
A source of a quasi--spherical space--time: The case for the M--Q solution
We present a physically reasonable source for an static, axially--symmetric
solution to the Einstein equations. Arguments are provided, supporting our
belief that the exterior space--time produced by such source, describing a
quadrupole correction to the Schwarzschild metric, is particularly suitable
(among known solutions of the Weyl family) for discussing the properties of
quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR
Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure
The combination of ultra-cold atomic clouds with the light fields of optical
cavities provides a powerful model system for the development of new types of
laser cooling and for studying cooperative phenomena. These experiments
critically depend on the precise tuning of an incident pump laser with respect
to a cavity resonance. Here, we present a simple and reliable experimental
tuning scheme based on a two-mode laser spectrometer. The scheme uses a first
laser for probing higher-order transversal modes of the cavity having an
intensity minimum near the cavity's optical axis, where the atoms are confined
by a magnetic trap. In this way the cavity resonance is observed without
exposing the atoms to unwanted radiation pressure. A second laser, which is
phase-locked to the first one and tuned close to a fundamental cavity mode
drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure
Stress tensor fluctuations in de Sitter spacetime
The two-point function of the stress tensor operator of a quantum field in de
Sitter spacetime is calculated for an arbitrary number of dimensions. We assume
the field to be in the Bunch-Davies vacuum, and formulate our calculation in
terms of de Sitter-invariant bitensors. Explicit results for free minimally
coupled scalar fields with arbitrary mass are provided. We find long-range
stress tensor correlations for sufficiently light fields (with mass m much
smaller than the Hubble scale H), namely, the two-point function decays at
large separations like an inverse power of the physical distance with an
exponent proportional to m^2/H^2. In contrast, we show that for the massless
case it decays at large separations like the fourth power of the physical
distance. There is thus a discontinuity in the massless limit. As a byproduct
of our work, we present a novel and simple geometric interpretation of de
Sitter-invariant bitensors for pairs of points which cannot be connected by
geodesics.Comment: 35 pages, 4 figure
Local fluctuations in quantum critical metals
We show that spatially local, yet low-energy, fluctuations can play an
essential role in the physics of strongly correlated electron systems tuned to
a quantum critical point. A detailed microscopic analysis of the Kondo lattice
model is carried out within an extended dynamical mean-field approach. The
correlation functions for the lattice model are calculated through a
self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled
both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field).
A renormalization-group treatment of this impurity problem--perturbative in
, where is an exponent characterizing the spectrum
of the bosonic bath--shows that competition between the two couplings can drive
the local-moment fluctuations critical. As a result, two distinct types of
quantum critical point emerge in the Kondo lattice, one being of the usual
spin-density-wave type, the other ``locally critical.'' Near the locally
critical point, the dynamical spin susceptibility exhibits scaling
with a fractional exponent. While the spin-density-wave critical point is
Gaussian, the locally critical point is an interacting fixed point at which
long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau
description for the locally critical point is discussed. It is argued that
these results are robust, that local criticality provides a natural description
of the quantum critical behavior seen in a number of heavy-fermion metals, and
that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text
corrected, version as publishe
Hilbert Expansion from the Boltzmann equation to relativistic Fluids
We study the local-in-time hydrodynamic limit of the relativistic Boltzmann
equation using a Hilbert expansion. More specifically, we prove the existence
of local solutions to the relativistic Boltzmann equation that are nearby the
local relativistic Maxwellian constructed from a class of solutions to the
relativistic Euler equations that includes a large subclass of near-constant,
non-vacuum fluid states. In particular, for small Knudsen number, these
solutions to the relativistic Boltzmann equation have dynamics that are
effectively captured by corresponding solutions to the relativistic Euler
equations.Comment: 50 page
Observed photodetachment in parallel electric and magnetic fields
We investigate photodetachment from negative ions in a homogeneous 1.0-T
magnetic field and a parallel electric field of approximately 10 V/cm. A
theoretical model for detachment in combined fields is presented. Calculations
show that a field of 10 V/cm or more should considerably diminish the Landau
structure in the detachment cross section. The ions are produced and stored in
a Penning ion trap and illuminated by a single-mode dye laser. We present
preliminary results for detachment from S- showing qualitative agreement with
the model. Future directions of the work are also discussed.Comment: Nine pages, five figures, minor revisions showing final publicatio
Collisional equilibrium, particle production and the inflationary universe
Particle production processes in the expanding universe are described within
a simple kinetic model. The equilibrium conditions for a Maxwell-Boltzmann gas
with variable particle number are investigated. We find that radiation and
nonrelativistic matter may be in equilibrium at the same temperature provided
the matter particles are created at a rate that is half the expansion rate.
Using the fact that the creation of particles is dynamically equivalent to a
nonvanishing bulk pressure we calculate the backreaction of this process on the
cosmological dynamics. It turns out that the `adiabatic' creation of massive
particles with an equilibrium distribution for the latter necessarily implies
power-law inflation. Exponential inflation in this context is shown to become
inconsistent with the second law of thermodynamics after a time interval of the
order of the Hubble time.Comment: 19 pages, latex, no figures, to appear in Phys.Rev.
- …
