2,569 research outputs found
Naked and Thunderbolt Singularities in Black Hole Evaporation
If an evaporating black hole does not settle down to a non radiating remnant,
a description by a semi classical Lorentz metric must contain either a naked
singularity or what we call a thunderbolt, a singularity that spreads out to
infinity on a spacelike or null path. We investigate this question in the
context of various two dimensional models that have been proposed. We find that
if the semi classical equations have an extra symmetry that make them solvable
in closed form, they seem to predict naked singularities but numerical
calculations indicate that more general semi classical equations, such as the
original CGHS ones give rise to thunderbolts. We therefore expect that the semi
classical approximation in four dimensions will lead to thunderbolts. We
interpret the prediction of thunderbolts as indicating that the semi classical
approximation breaks down at the end point of black hole evaporation, and we
would expect that a full quantum treatment would replace the thunderbolt with a
burst of high energy particles. The energy in such a burst would be too small
to account for the observed gamma ray bursts.Comment: 21 pages (10 diagrams available on request
Fluctuations along supersymmetric flat directions during Inflation
We consider a set of scalar fields, consisting of a single flat direction and
one or several non-flat directions. We take our cue from the MSSM, considering
separately D-flat and F-flat directions, but our results apply to any
supersymmetric scenario containing flat directions. We study the field
fluctuations during pure de Sitter Inflation, following the evolution of the
infrared modes by numerically solving the appropriate Langevin equations. We
demonstrate that for the Standard Model U(1), SU(2) or SU(3) gauge couplings,
as well as for large enough Yukawa couplings, the fluctuations along the
non-flat directions effectively block the fluctuations along the flat
directions. The usual expected behaviour \propto N, with N the
number of efolds, may be strongly violated, depending on the coupling
strengths. As a consequence, those cosmological considerations, which are
derived assuming that during inflation flat directions fluctuate freely, should
be revised.Comment: 19 pages, 5 figures, Submitted to JCA
Theory and experiment of the ESR of Co in Zn % (OH)PO and Mg(OH)AsO
Experiments of Electron Spin Resonance (ESR) were performed on Co
substituting Zn or Mg in powder samples of Zn(OH)PO and
Mg(OH)AsO. The observed resonances are described with a theoretical
model that considers the departures from the two perfect structures. It is
shown that the resonance in the penta-coordinated complex is allowed, and the
crystal fields that would describe the resonance of the Co in the two
environments are calculated. The small intensity of the resonance in the
penta-coordinated complex is explained assuming that this site is much less
populated than the octahedral one; this assumption was verified by a molecular
calculation of the energies of the two environments, with both Co and Zn as
central ions in Zn(OH)PO.Comment: 43 pages, LaTex file, 6 figures, EPS. submitted to Journal of Physics
Condens
Feasibility of human lung ventilation imaging using highly polarized naturally abundant xenon and optimized three-dimensional steady-state free precession
Purpose
To demonstrate the potential for high quality MRI of pulmonary ventilation using naturally abundant xenon (NAXe) gas.
Methods
MRI was performed at 1.5 Tesla (T) and 3 T on one healthy smoker and two healthy never-smokers. 129Xe gas was polarized to ∼25% using an in-house spin-exchange optical pumping polarizer fitted with a laser diode array with integrated volume holographic grating and optical train system. Volunteers inhaled 1 L of NAXe for an 8 to 15 s breathhold while MR images were acquired with full-lung coverage using a three-dimensional steady-state free precession sequence, optimized for maximum signal-to-noise ratio (SNR) at a given spatial resolution. For the purpose of image quality comparison, the MR acquisition was repeated at 1.5 T with 400 mL enriched xenon and 200 mL 3He.
Results
All NAXe lung images were of high quality, with mean SNRs of 25–40 (voxel 4.2 × 4.2 × 8/10 mm3) and ∼30% improvement at 3 T versus 1.5 T. The high SNR permitted identification of minor ventilation defects in the healthy smoker's lungs. NAXe images were of comparable SNR to those obtained with enriched xenon and 3He.
Conclusion
Optimization of MR pulse sequences and advances in polarization technology have facilitated high quality pulmonary ventilation imaging with inexpensive NAXe gas. Magn Reson Med 74:346–352, 2015
The Bousso entropy bound in selfgravitating gas of massless particles
The Bousso entropy bound is investigated in a static spherically symmetric
spacetime filled with an ideal gas of massless bosons or fermions. Especially
lightsheets generated by spheres are considered. Statistical description of the
gas is given. Conditions under which the Bousso bound can be violated are
discussed and it is shown that a possible violating region cannot be
arbitrarily large and it is contained inside a sphere of unit Planck radius if
number of independent polarization states is small enough. It is also
shown that central temperature must exceed the Planck temperature to get a
violation of the Bousso bound for not too large.Comment: 14 pages, 4 figures, a paragraph added, version published in Gen.
Rel. Gra
Bell's theorem as a signature of nonlocality: a classical counterexample
For a system composed of two particles Bell's theorem asserts that averages
of physical quantities determined from local variables must conform to a family
of inequalities. In this work we show that a classical model containing a local
probabilistic interaction in the measurement process can lead to a violation of
the Bell inequalities. We first introduce two-particle phase-space
distributions in classical mechanics constructed to be the analogs of quantum
mechanical angular momentum eigenstates. These distributions are then employed
in four schemes characterized by different types of detectors measuring the
angular momenta. When the model includes an interaction between the detector
and the measured particle leading to ensemble dependencies, the relevant Bell
inequalities are violated if total angular momentum is required to be
conserved. The violation is explained by identifying assumptions made in the
derivation of Bell's theorem that are not fulfilled by the model. These
assumptions will be argued to be too restrictive to see in the violation of the
Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change
Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.
PURPOSE: To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized (3) He gas for whole lung morphometry with compressed sensing (CS). METHODS: A fully-sampled, two b-value, 3D hyperpolarized (3) He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the ky and kz phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled (3) He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value (3) He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (LmD ) were validated against two-dimensional (2D) and 3D fully-sampled (3) He DW-MRI experiments. RESULTS: Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and LmD values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. CONCLUSIONS: Accelerated CS acquisition has facilitated 3D multiple b-value (3) He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability
Using unitary transformations, we express the Kondo lattice Hamiltonian in
terms of fermionic operators that annihilate the ground state of the
interacting system and that represent the best possible approximations to the
actual charged excitations. In this way, we obtain an effective Hamiltonian
which, for small couplings, consists in a kinetic term for conduction electrons
and holes, an RKKY-like term, and a renormalized Kondo interaction. The
physical picture of the system implied by this formalism is that of a vacuum
state consisting in a background of RKKY-induced spin correlations, where two
kinds of elementary modes can be excited: Soft neutral modes associated with
deformations of the spin liquid, which lead to very large low-temperature
values of the heat capacity and magnetic susceptibility, and charged modes
corresponding to the excitation of electrons and holes in the system. Using the
translational and spin rotational symmetries, we construct a simple ansatz to
determine the charged excitations neglecting the effects of the spin
correlations. Apart from the `normal', uncorrelated states, we find strongly
correlated charged modes involving soft electrons (or holes) and spin
fluctuations, which strongly renormalize the low-energy charged spectrum, and
whose energy becomes negative beyond a critical coupling, signaling a vacuum
instability and a transition to a new phase.Comment: 35 pages, revtex 3.
Geometrization of metric boundary data for Einstein's equations
The principle part of Einstein equations in the harmonic gauge consists of a
constrained system of 10 curved space wave equations for the components of the
space-time metric. A well-posed initial boundary value problem based upon a new
formulation of constraint-preserving boundary conditions of the Sommerfeld type
has recently been established for such systems. In this paper these boundary
conditions are recast in a geometric form. This serves as a first step toward
their application to other metric formulations of Einstein's equations.Comment: Article to appear in Gen. Rel. Grav. volume in memory of Juergen
Ehler
Conformal symmetry and deflationary gas universe
We describe the ``deflationary'' evolution from an initial de Sitter phase to
a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period as a
specific non-equilibrium configuration of a self-interacting gas. The
transition dynamics corresponds to a conformal, timelike symmetry of an
``optical'' metric, characterized by a refraction index of the cosmic medium
which continously decreases from a very large initial value to unity in the
FLRW phase.Comment: 10 pages, to appear in "Exact Solutions and Scalar Fields in Gravity:
Recent Developments", ed. by A. Macias, J. Cervantes-Cota, and C.
L\"ammerzahl, Kluwer Academic Publishers 200
- …
