23 research outputs found
Neutrino cooling and spin-down of rapidly rotating compact stars
The gravitational-wave instability of r-modes in rapidly rotating compact
stars is believed to spin them down to angular frequencies of about a tenth of
the Kepler frequency soon after their birth in a Supernova. We point out that
the r-mode perturbation also impacts the neutrino cooling and viscosity in hot
compact stars via processes that restore weak equilibrium. We illustrate this
fact with a simple model of spin-down due to gravitational wave emission in
compact stars composed entirely of three-flavor degenerate quark matter (a
strange quark star). Non-equilibrium neutrino cooling of this oscillating fluid
matter is quantified. Our results imply that a consistent treatment of thermal
and spin-frequency evolution of a young and hot compact star is a requisite in
estimating the persistence of gravitational waves from such a source.Comment: 10 pages, 1 figur
The i-process and CEMP-r/s stars
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. We investigate whether the anomalous elemental abundance patterns in some of the C-enhanced metal-poor-r/s (CEMP-r/s) stars are consistent with predictions of nucleosynthesis yields from the i-process, a neutron-capture regime at neutron densities intermediate between those typical for the slow (s) and rapid (r) processes. Conditions necessary for the i-process are expected to be met at multiple stellar sites, such as the He-core and He-shell flashes in low-metallicity low-mass stars, super-AGB and post-AGB stars, as well as low-metallicity massive stars. We have found that single-exposure one-zone simulations of the i-process reproduce the abundance patterns in some of the CEMP-r/s stars much better than the model that assumes a superposition of yields from s and r-process sources. Our previous study of nuclear data uncertainties relevant to the i-process revealed that they could have a significant impact on the i-process yields obtained in our idealized one-zone calculations, leading, for example, to ∼ 0:7dex uncertainty in our predicted [Ba/La] ratio. Recent 3D hydrodynamic simulations of convection driven by a He-shell flash in post-AGB Sakurai's object have discovered a new mode of non-radial instabilities: the Global Oscillation of Shell H-ingestion. This has demonstrated that spherically symmetric stellar evolution simulations cannot be used to accurately model physical conditions for the i-process
The i-process and CEMP-r/s stars
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. We investigate whether the anomalous elemental abundance patterns in some of the C-enhanced metal-poor-r/s (CEMP-r/s) stars are consistent with predictions of nucleosynthesis yields from the i-process, a neutron-capture regime at neutron densities intermediate between those typical for the slow (s) and rapid (r) processes. Conditions necessary for the i-process are expected to be met at multiple stellar sites, such as the He-core and He-shell flashes in low-metallicity low-mass stars, super-AGB and post-AGB stars, as well as low-metallicity massive stars. We have found that single-exposure one-zone simulations of the i-process reproduce the abundance patterns in some of the CEMP-r/s stars much better than the model that assumes a superposition of yields from s and r-process sources. Our previous study of nuclear data uncertainties relevant to the i-process revealed that they could have a significant impact on the i-process yields obtained in our idealized one-zone calculations, leading, for example, to ∼ 0:7dex uncertainty in our predicted [Ba/La] ratio. Recent 3D hydrodynamic simulations of convection driven by a He-shell flash in post-AGB Sakurai's object have discovered a new mode of non-radial instabilities: the Global Oscillation of Shell H-ingestion. This has demonstrated that spherically symmetric stellar evolution simulations cannot be used to accurately model physical conditions for the i-process
Health, Well-being, and Social Indicators Among Monks, Prisoners, and Other Adult Members of an Open University Cohort in Thailand
Grain Alignment in Turbulent Cores
University of Minnesota Ph.D. dissertation.December 2018. Major: Astrophysics. Advisor: Terry Jones. 1 computer file (PDF); vii, 49 pages.The Interstellar Medium (ISM) is strongly magnetized therefore magnetic fields are important to its evolution. The morphology of the interstellar field can be mapped using polarized emission from large asymmetric silicate grains that are aligned with their long axis perpendicular to the magnetic field as well as through polarized extinction of background sources by the same grains. The grains are spun-up and subsequently aligned via Radiative Alignment Torques (RAT) due to anisotropic radiation from the Interstellar Radiation Field (ISRF) or a localized source such as a protostar. Deep inside starless cores the ISRF is highly reddened and therefore grains can not be aligned by it. We examine if the growth of large grains or a warm central source can enhance alignment to detectable levels. We found that while both large grains and an embedded protostar with enhance the fraction of aligned grains deep in the core this enhancement did not translate to a significant enhancement of the polarized fraction in emission and extinction. This is because the enhancement at most brings the normalized fraction of aligned grains from to which is likely undetectable considering that the polarization limit for maximally aligned grains is only in extinction and in emission
Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/
