511 research outputs found
Impact of Dreissena fouling on the physiological condition of native and invasive bivalves : interspecific and temporal variations
The impact of Dreissena fouling on unionids
has hardly been studied in Europe, despite the fact
that in some ecosystems (e.g. Lake Balaton, Hungary)
infestations of several hundreds to a thousand individuals
per unionid have been observed. At present,
the zebra mussel Dreissena polymorpha is a dominant
species in Lake Balaton and in the last decade three
other invasive bivalves were introduced, potentially
increasing the pressure on native unionid survival. We
examined whether the fouling of dreissenids (zebra
and quagga (D. rostriformis bugensis) mussels) has a
negative impact on native (Anodonta anatina, Unio
pictorum and U. tumidus) and invasive (Corbicula
fluminea and Sinanodonta woodiana) bivalves and
whether there are any interspecific and temporal
variations in fouling intensity and physiological
condition measured by standard condition index and
glycogen content. A significant negative impact was detected on native unionids only in July and September
(no impact was detected in May), when the fouling
rate was high. For invasive species, a significant
negative impact was detected on S. woodiana with a
high level of dressenid infestation; whereas no significant
impact was detected on C. fluminea. Overall, this
study confirms that Dreissena may threaten unionid
species including the invasive S. woodiana, although
high interspecific and temporal variations were
observed. This situation should be taken into account
in future ecological and conservational assessments
because species respond differently to Dreissena
fouling and effects seem to be more pronounced in
late summer/early autumn. In addition, this study
provides the first evidence that the invasive C.
fluminea appear to be less vulnerable to dressenid
fouling.The study was supported by the Hungarian Scientific Fund (KTIA-OTKA) under the contract No. CNK80140
Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web
Large-scale mortality of invasive bivalves
was observed in the River Danube basin in the autumn
of 2011 due to a particularly low water discharge. The
aim of this study was to quantify and compare the
biomass of invasive and native bivalve die-offs
amongst eight different sites and to assess the potential
role of invasive bivalve die-offs as a resource subsidy
for the adjacent terrestrial food web. Invasive bivalve
die-offs dominated half of the study sites and their
highest density and biomass were recorded at the
warm water effluent. The density and biomass values
recorded in this study are amongst the highest values
recorded for aquatic ecosystems and show that a
habitat affected by heated water can sustain an extremely high biomass of invasive bivalves. These
mortalities highlight invasive bivalves as a major
resource subsidy, possibly contributing remarkable
amounts of nutrients and energy to the adjacent
terrestrial ecosystem. Given the widespread occurrence
of these invasive bivalves and the predicted
increase in the frequency and intensity of extreme
climatic events, the ecological impacts generated by
their massive mortalities should be taken into account
in other geographical areas as well.The authors are grateful to David Strayer for valuable comments on a previous version of the manuscript. Special thanks to the Danube-Ipoly National Park for the help in field work. Ronaldo Sousa was supported by the project "ECOIAS" funded by the Portuguese Foundation for the Science and the Technology and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010)
Cognitive workload measurement and modeling under divided attention
Motorists often engage in secondary tasks unrelated to driving that increase cognitive workload, resulting in fatal crashes and injuries. An International Standards Organization method for measuring a driver's cognitive workload, the detection response task (DRT), correlates well with driving outcomes, but investigation of its putative theoretical basis in terms of finite attention capacity remains limited. We address this knowledge gap using evidence-accumulation modeling of simple and choice versions of the DRT in a driving scenario. Our experiments demonstrate how dual-task load affects the parameters of evidence-accumulation models. We found that the cognitive workload induced by a secondary task (counting backward by 3s) reduced the rate of evidence accumulation, consistent with rates being sensitive to limited-capacity attention. We also found a compensatory increase in the amount of evidence required for a response and a small speeding in the time for nondecision processes. The International Standards Organization version of the DRT was found to be most sensitive to cognitive workload. A Wald-distributed evidence-accumulation model augmented with a parameter measuring response omissions provided a parsimonious measure of the underlying causes of cognitive workload in this task. This work demonstrates that evidence-accumulation modeling can accurately represent data produced by cognitive workload measurements, reproduce the data through simulation, and provide supporting evidence for the cognitive processes underlying cognitive workload. Our results provide converging evidence that the DRT method is sensitive to dynamic fluctuations in limited-capacity attention
Biology and conservation of freshwater bivalves : past, present and future perspectives
Freshwater bivalves have been highly
threatened by human activities, and recently their
global decline has been causing conservational and
social concern. In this paper, we review the most
important research events in freshwater bivalve biology
calling attention to the main scientific achievements.
A great bias exists in the research effort, with
much more information available for bivalve species
belonging to the Unionida in comparison to other
groups. The same is true for the origin of these studies,
since the publishing pattern does not always correspond
to the hotspots of biodiversity but is concentrated in the northern hemisphere mainly in
North America, Europe and Russia, with regions such
as Africa and Southeast Asia being quite understudied.
We also summarize information about past, present
and future perspectives concerning the most important
research topics that include taxonomy, systematics,
anatomy, physiology, ecology and conservation of
freshwater bivalves. Finally, we introduce the articles
published in this Hydrobiologia special issue related
with the International Meeting on Biology and Conservation
of Freshwater Bivalves held in 2012 in
Braganc¸a, Portugal.We would like to express our gratitude to our sponsors and institutions, especially to the Polytechnic Institute of Braganca for all the logistic support. We acknowledge all keynote speakers, authors, session chairpersons and especially to all attendees whose contributions were fundamental for the success of this meeting. We would also like to thank all referees of this special issue and to Koen Martens, Editor-in-Chief of Hydrobiologia, for all the valuable comments and suggestions. The chronogram was built with the help of the expert opinion of fellow colleagues Rafael Araujo, Arthur Bogan, Kevin Cummings, Dan Graf, Wendell Haag, Karl-Otto Nagel and David Strayer to whom we are very grateful. The authors acknowledge the support provided by Portuguese Foundation for Science and Technology (FCT) and COMPETE funds-projects CONBI (Contract: PTDC/AAC-AMB/117688/2010) and ECO-IAS (Contract: PTDC/AAC-AMB/116685/2010), and by the European Regional Development Fund (ERDF) through the COMPETE, under the project "PEst-C/MAR/LA0015/2011"
Aquatic Hyphomycete Species Are Screened by the Hyporheic Zone of Woodland Streams
Aquatic hyphomycetes strongly contribute to organic matter dynamics in streams, but their abilities to colonize leaf litter buried in streambed sediments remain unexplored. Here, we conducted field and laboratory experiments (slow-filtration columns and stream-simulating microcosms) to test the following hypotheses: (i) that the hyporheic habitat acting as a physical sieve for spores filters out unsuccessful strategists from a potential species pool, (ii) that decreased pore size in sediments reduces species dispersal efficiency in the interstitial water, and (iii) that the physicochemical conditions prevailing in the hyporheic habitat will influence fungal community structure. Our field study showed that spore abundance and species diversity were consistently re- duced in the interstitial water compared with surface water within three differing streams. Significant differences occurred among aquatic hyphomycetes, with dispersal efficiency of filiform-spore species being much higher than those with compact or branched/tetraradiate spores. This pattern was remarkably consistent with those found in laboratory experiments that tested the influence of sediment pore size on spore dispersal in microcosms. Furthermore, leaves inoculated in a stream and incubated in slow-filtration columns exhibited a fungal assemblage dominated by only two species, while five species were codominant on leaves from the stream-simulating microcosms. Results of this study highlight that the hyporheic zone exerts two types of selec- tion pressure on the aquatic hyphomycete community, a physiological stress and a physical screening of the benthic spore pool, both leading to drastic changes in the structure of fungal community
Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels
Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants
Restricted by borders: trade-offs in transboundary conservation planning for large river systems
Effective conservation of freshwater biodiversity requires accounting for connectivity and the propagation of threats along river networks. With this in mind, the selection of areas to conserve freshwater biodiversity is challenging when rivers cross multiple jurisdictional boundaries. We used systematic conservation planning to identify priority conservation areas for freshwater fish conservation in Hungary (Central Europe). We evaluated the importance of transboundary rivers to achieve conservation goals by systematically deleting some rivers from the prioritization procedure in Marxan and assessing the trade-offs between complexity of conservation recommendations (e.g., conservation areas located exclusively within Hungary vs. transboundary) and cost (area required). We found that including the segments of the largest transboundary rivers (i.e. Danube, Tisza) in the area selection procedure yielded smaller total area compared with the scenarios which considered only smaller national and transboundary rivers. However, analyses which did not consider these large river segments still showed that fish diversity in Hungary can be effectively protected within the country’s borders in a relatively small total area (less than 20 % of the country’s size). Since the protection of large river segments is an unfeasible task, we suggest that transboundary cooperation should focus on the protection of highland riverine habitats (especially Dráva and Ipoly Rivers) and their valuable fish fauna, in addition to the protection of smaller national rivers and streams. Our approach highlights the necessity of examining different options for selecting priority areas for conservation in countries where transboundary river systems form the major part of water resources.Full Tex
Mind your step: the effects of mobile phone use on gaze behavior in stair climbing
Stair walking is a hazardous activity and a common cause of fatal and non-fatal falls. Previous studies have assessed the role of eye movements in stair walking by asking people to repeatedly go up and down stairs in quiet and controlled conditions, while the role of peripheral vision was examined by giving participants specific fixation instructions or working memory tasks. We here extend this research to stair walking in a natural environment with other people present on the stairs and a now common secondary task: Using one's mobile phone. Results show that using the mobile phone strongly draws one's attention away from the stairs, but that the distribution of gaze locations away from the phone is little influenced by using one's phone. Phone use also increased the time needed to walk the stairs, but handrail use remained low. These results indicate that limited foveal vision suffices for adequate stair walking in normal environments, but that mobile phone use has a strong influence on attention, which may pose problems when unexpected obstacles are encountered
Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.
Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government’s Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could ‘clean’ their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ2 = 117.24, p < 0.001; 1 day χ2 = 95.68, p < 0.001; 8 days χ2 = 12.16, p < 0.001 and 16 days χ2 = 7.58, p < 0.001). Drying caused significantly higher mortality than the control (no action) from day 4 (χ2 = 8.49, p < 0.01) onwards. In the absence of hot water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns
Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens
Invasive non-native species (INNS) endanger native biodiversity and are a major economic problem. The management of pathways to prevent their introduction and establishment is a key target in the Convention on Biological Diversity's Aichi biodiversity targets for 2020. Freshwater environments are particularly susceptible to invasions as they are exposed to multiple introduction pathways, including non-native fish stocking and the release of boat ballast water. Since many freshwater INNS and aquatic pathogens can survive for several days in damp environments, there is potential for transport between water catchments on the equipment used by recreational anglers and canoeists. To quantify this biosecurity risk, we conducted an online questionnaire with 960 anglers and 599 canoeists to investigate their locations of activity, equipment used, and how frequently equipment was cleaned and/or dried after use. Anglers were also asked about their use and disposal of live bait. Our results indicate that 64% of anglers and 78.5% of canoeists use their equipment/boat in more than one catchment within a fortnight, the survival time of many of the INNS and pathogens considered in this study and that 12% of anglers and 50% of canoeists do so without either cleaning or drying their kit between uses. Furthermore, 8% of anglers and 28% of canoeists had used their equipment overseas without cleaning or drying it after each use which could facilitate both the introduction and secondary spread of INNS in the UK. Our results provide a baseline against which to evaluate the effectiveness of future biosecurity awareness campaigns, and identify groups to target with biosecurity awareness information. Our results also indicate that the biosecurity practices of these groups must improve to reduce the likelihood of inadvertently spreading INNS and pathogens through these activities
- …
