162 research outputs found
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis (vol 42, pg 579, 2010)
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.
BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency
GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on ‘around the clock’ glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification
A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.
To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2
Re-sequencing Expands Our Understanding of the Phenotypic Impact of Variants at GWAS Loci
Genome-wide association studies (GWAS) have identified .500 common variants associated with quantitative metabolic
traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these
traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in
.6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes
case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding
sequence and 59 and 39 untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits
(serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both
single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype
associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant
evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found
significant gene-level evidence of association to non-synonymous variants with MAF,1%. Additionally, two potentially
deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094,
a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference
populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated
population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped
samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants
The genetic architecture of type 2 diabetes.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes
Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization.
BACKGROUND: Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. METHODS: To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. RESULTS: Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. CONCLUSIONS: Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries
Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP <5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P <5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P <4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.Peer reviewe
- …
