499 research outputs found
Global pointwise decay estimates for defocusing radial nonlinear wave equations
We prove global pointwise decay estimates for a class of defocusing
semilinear wave equations in dimensions restricted to spherical symmetry.
The technique is based on a conformal transformation and a suitable choice of
the mapping adjusted to the nonlinearity. As a result we obtain a pointwise
bound on the solutions for arbitrarily large Cauchy data, provided the
solutions exist globally. The decay rates are identical with those for small
data and hence seem to be optimal. A generalization beyond the spherical
symmetry is suggested.Comment: 9 pages, 1 figur
A threshold phenomenon for embeddings of into Orlicz spaces
We consider a sequence of positive smooth critical points of the
Adams-Moser-Trudinger embedding of into Orlicz spaces. We study its
concentration-compactness behavior and show that if the sequence is not
precompact, then the liminf of the -norms of the functions is greater
than or equal to a positive geometric constant.Comment: 14 Page
A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres
Published versio
Multiple solutions of the quasirelativistic Choquard equation
We prove existence of multiple solutions to the quasirelativistic Choquard equation with a scalar potential
Renormalization and blow up for charge one equivariant critical wave maps
We prove the existence of equivariant finite time blow up solutions for the
wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the
sum of a dynamically rescaled ground-state harmonic map plus a radiation term.
The local energy of the latter tends to zero as time approaches blow up time.
This is accomplished by first "renormalizing" the rescaled ground state
harmonic map profile by solving an elliptic equation, followed by a
perturbative analysis
Existence of solutions to a higher dimensional mean-field equation on manifolds
For we prove an existence result for the equation on a closed Riemannian
manifold of dimension for certain values of .Comment: 15 Page
New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces
We consider a singular Liouville equation on a compact surface, arising from
the study of Chern-Simons vortices in a self dual regime. Using new improved
versions of the Moser-Trudinger inequalities (whose main feature is to be
scaling invariant) and a variational scheme, we prove new existence results.Comment: to appear in GAF
An improved geometric inequality via vanishing moments, with applications to singular Liouville equations
We consider a class of singular Liouville equations on compact surfaces
motivated by the study of Electroweak and Self-Dual Chern-Simons theories, the
Gaussian curvature prescription with conical singularities and Onsager's
description of turbulence. We analyse the problem of existence variationally,
and show how the angular distribution of the conformal volume near the
singularities may lead to improvements in the Moser-Trudinger inequality, and
in turn to lower bounds on the Euler-Lagrange functional. We then discuss
existence and non-existence results.Comment: some references adde
Assessment of correlations for heat transfer to the cooland for heavy liquid metal cooled core designs
Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry
Differentiating the structure of isobaric glycopeptides represents a major
challenge for mass spectrometry-based characterisation techniques. Here we
show that the regiochemistry of the most common N-acetylneuraminic acid
linkages of N-glycans can be identified in a site-specific manner from
individual glycopeptides using ion mobility-mass spectrometry analysis of
diagnostic fragment ions
- …
