2,268 research outputs found
Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering
Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates
Cleaning the USNO-B Catalog through automatic detection of optical artifacts
The USNO-B Catalog contains spurious entries that are caused by diffraction
spikes and circular reflection halos around bright stars in the original
imaging data. These spurious entries appear in the Catalog as if they were real
stars; they are confusing for some scientific tasks. The spurious entries can
be identified by simple computer vision techniques because they produce
repeatable patterns on the sky. Some techniques employed here are variants of
the Hough transform, one of which is sensitive to (two-dimensional)
overdensities of faint stars in thin right-angle cross patterns centered on
bright (<13 \mag) stars, and one of which is sensitive to thin annular
overdensities centered on very bright (<7 \mag) stars. After enforcing
conservative statistical requirements on spurious-entry identifications, we
find that of the 1,042,618,261 entries in the USNO-B Catalog, 24,148,382 of
them (2.3 \percent) are identified as spurious by diffraction-spike criteria
and 196,133 (0.02 \percent) are identified as spurious by reflection-halo
criteria. The spurious entries are often detected in more than 2 bands and are
not overwhelmingly outliers in any photometric properties; they therefore
cannot be rejected easily on other grounds, i.e., without the use of computer
vision techniques. We demonstrate our method, and return to the community in
electronic form a table of spurious entries in the Catalog.Comment: published in A
Heterocyst placement strategies to maximize growth of cyanobacterial filaments
Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria
develop a regular pattern of heterocyst cells that fix nitrogen for the
remaining vegetative cells. We examine three different heterocyst placement
strategies by quantitatively modelling filament growth while varying both
external fixed-nitrogen and leakage from the filament. We find that there is an
optimum heterocyst frequency which maximizes the growth rate of the filament;
the optimum frequency decreases as the external fixed-nitrogen concentration
increases but increases as the leakage increases. In the presence of leakage,
filaments implementing a local heterocyst placement strategy grow significantly
faster than filaments implementing random heterocyst placement strategies. With
no extracellular fixed-nitrogen, consistent with recent experimental studies of
Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our
local heterocyst placement strategy is qualitatively similar to experimentally
observed patterns. As external fixed-nitrogen is increased, the spacing
distribution for our local placement strategy retains the same shape while the
average spacing between heterocysts continuously increases.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Physical Biology. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher-authenticated version
will be available onlin
Перспективи використання тонкодисперсних вуглецевих матеріалів
У останні десятиліття особливу увагу вчених привертає дослідження різних алотропних видозмін вуглецю, зокрема природних: алмазу, графіту, лонсдейліту, фулерену, вуглецевих нанотрубок (у тому числі шунгіту – природного нанотехн-логічного матеріалу) і штучних: карбіну, графену, аморфного вуглецю (кокс, вугілля, технічний вуглець, сажа, активоване вугілля). Водночас у техніці все більше розповсюдження отримують тонкодисперсні вуглецеві матеріали, зокрема тонкодисперсне вугілля та технічний вуглець, тонкоподрібнений аморфний вуглець, активоване вугілля, дослідженню яких присвячено ряд окремих досліджень, у т.ч. і авторів статті
An abyssal hill fractionates organic and inorganic matter in deep-sea surface sediments
Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention
Bottom sediments of Lake Rotoma
Lake Rotoma is a deep (70-80 m), oligotrophic, warm monomictic lake of volcanic origin with insignificant stream inflow and no clearly defined outflow. For at least 60 years up to 1972 the lake level fluctuated markedly about an overall rising trend of some 6-10 m. Nearshore profiles are related to the prevailing wave climate superimposed upon the overall rising lake level, shelves being wider, less steep, and deeper about the more exposed eastern and southern shorelines. The outer portions of shelves extending well below modern storm wave base into waters as deep as 15-25 m are relict features from lower lake level stands. Sediments fine from sand-gravel mixtures nearshore to silts in basinal areas. Their composition reflects a composite provenance involving the lavas and tephras about the lake, as well as intralake diatom frustules and organic matter. The distribution pattern of surficial bottom sediments is an interplay between grains of both biological and terrigenous origin, supplied presently and in the past by a variety of processes, that have been dispersed either by the modern hydrodynamic regime or by former ones associated with lower lake levels. These interrelationships are structured by erecting 5 process-age sediment classes in the lake, namely neoteric, amphoteric, proteric, palimpsest, and relict sediments, analogous to categories postulated for sediments on oceanic continental shelves. Short-core stratigraphy includes the Kaharoa (A.D. -1020) and Tarawera (A.D. 1886) tephras. The rates of sedimentation of diatomaceous silts in basinal areas have more than doubled since the Tarawera eruption, indicating an overall increase in the fertility level of lake waters associated, perhaps, with recent farm development in the catchment
Nitrous oxide cycling in the Arabian Sea
Depth profiles of dissolved nitrous oxide (N2O) were measured in the central and western Arabian Sea during four cruises in May and July–August 1995 and May–July 1997 as part of the German contribution to the Arabian Sea Process Study of the Joint Global Ocean Flux Study. The vertical distribution of N2O in the water column on a transect along 65°E showed a characteristic double-peak structure, indicating production of N2O associated with steep oxygen gradients at the top and bottom of the oxygen minimum zone. We propose a general scheme consisting of four ocean compartments to explain the N2O cycling as a result of nitrification and denitrification processes in the water column of the Arabian Sea. We observed a seasonal N2O accumulation at 600–800 m near the shelf break in the western Arabian Sea. We propose that, in the western Arabian Sea, N2O might also be formed during bacterial oxidation of organic matter by the reduction of IO3 − to I−, indicating that the biogeochemical cycling of N2O in the Arabian Sea during the SW monsoon might be more complex than previously thought. A compilation of sources and sinks of N2O in the Arabian Sea suggested that the N2O budget is reasonably balanced
Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes.
We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide
The reaction between dissolved sulfide and synthetic iron (oxyhydr)oxide minerals was studied in artificial seawater and 0.1 M NaCl at pH 7.5 and 25°C. Electron transfer between surface-complexed sulfide and solid phase Fe(III) results in the oxidation of dissolved sulfide to elemental sulfur, and the subsequent dissolution of the surface-reduced Fe. Sulfide oxidation and Fe(II) dissolution kinetics were evaluated for freshly precipitated hydrous ferric oxide (HFO), lepidocrocite, goethite, magnetite, hematite, and Al-substituted lepidocrocite. Reaction kinetics were expressed in terms of an empirical rate equation of the form:
R-i = k(i)(H2S)(t=0)(0.5)A
where Ri is the rate of Fe(II) dissolution (RFe) or the rate of sulfide oxidation (RS), ki is the appropriate rate constant (kFe or kS), (H2S)t=0 is the initial dissolved sulfide concentration, and A is the initial mineral surface area. The rate constants derived from the above equation suggest that the reactivity of Fe (oxyhydr)oxide minerals varies over two orders of magnitude, with increasing reactivity in the order, goethite < hematite < magnetite << lepidocrocite ≈ HFO. Competitive adsorption of major seawater solutes has little effect on reaction kinetics for the most reactive minerals, but results in rates which are reduced by 65-80% for goethite, magnetite, and hematite. This decrease in reaction rates likely arises from the blocking of surface sites for sulfide complexation by the adsorption of seawater solutes during the later, slower stages of adsorption (possibly attributable to diffusion into micropores or aggregates). The derivation of half lives for the sulfide-promoted reductive dissolution of Fe (oxyhydr)oxides in seawater, suggests that mineral reactivity can broadly be considered in terms of two mineral groups. Minerals with a lower degree of crystal order (hydrous ferric oxides and lepidocrocite) are reactive on a time-scale of minutes to hours. The more ordered minerals (goethite, magnetite, and hematite) are reactive on a time-scale of tens of days. Substitution of impurities within the mineral structure (as is likely in nature) has an effect on mineral reactivity. However, these effects are unlikely to have a significant impact on the relative reactivities of the two mineral groups
- …
