25,456 research outputs found

    Stellar Evolution Constraints on the Triple-Alpha Reaction Rate

    Full text link
    We investigate the quantitative constraint on the triple-alpha reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 < M / Msun < 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M >~ 10 Msun) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8 < M / Msun < 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-alpha reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least nu > 10 at T = 1 - 1.2 x 10^8 K where the cross section is proportional to T^{nu}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10^{-29} cm^6 s^{-1} mole^{-2} at ~ 10^{7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical RGB tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than ten orders of magnitude.Comment: 14 pages, 8 figures, accepted by the Ap

    Symmetric and skew-symmetric {0,±1}\{0,\pm 1\}-matrices with large determinants

    Full text link
    We show that the existence of {±1}\{\pm 1\}-matrices having largest possible determinant is equivalent to the existence of certain tournament matrices. In particular, we prove a recent conjecture of Armario. We also show that large submatrices of conference matrices are determined by their spectrum.Comment: 14 page

    Breathing multichimera states in nonlocally coupled phase oscillators

    Get PDF
    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions, and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.Comment: 8 pages, 9 figures. Fixed a typo in the published versio

    Influence of gravitational waves on circular moving particles

    Full text link
    We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direction. As a main result of our calculation we obtain in addition to the well-known alteration of the radial distance a time dependent correction term for the phase modifying the circular motion of the particle. A background of gravitational waves creates some kind of uncertainty.Comment: Figures adjusted to correction term for the angular velocity, and references adde
    corecore