1,778 research outputs found
Sphingosine mediates FTY720-induced apoptosis in LLC-PK1 cells
FTY720, a synthetic sphingoid base analog, was examined as a new sphingosine kinase inhibitor, which converts endogenous sphingosine into its phosphate form. With 20 ??M of FTY720, sphingosine accumulated in the LLC-PK1 cells in a time- and dose-dependent manner. The FTY720 treated cells showed a high concentration of fragmented DNA, a high caspase-3 like activity and TUNEL staining cells. It was also found that the sphingosine and sphinganine level increased in a time- and dose-dependent manner within 12 h after the FTY720 treatment. The sphingosine kinase activity was reduced by FTY720 as much as other sphingosine kinase inhibitors, N, N-dimethylsphingosine (DMS), dl-threo-dihydrosphingosine (DHS). The fragmented DNA content as a result of the 20 ??M of FTY720 treatment and by 5 ??M of the exogenously added BSA-sphingosine complex indicated typical apoptosis. Under similar conditions, the accumulated sphingosine concentration in all the cells was almost identical even though the sphingosine distribution inside the cells was somewhat different. These results indicate that the FTY720 induced apoptosis is associated with the inhibition of the sphingosine kinase activity and is strongly associated with the successive accumulation of sphingosine.open172
Crystallization and preliminary X-ray crystallographic analysis of a yedU gene product from Escherichia coli
A yedU gene product with a molecular mass of 31 kDa is a hypothetical protein with no known function. The protein was purified and crystallized at 296 K. X-ray diffraction data have been collected to 2.3 Angstrom using synchrotron radiation. The crystals belong to the primitive orthorhombic system, with unit-cell parameters a = 50.56, b = 63.45, c = 168.02 Angstrom. The asymmetric unit contains two monomers of the protein, with a corresponding V-M of 2.25 Angstrom(3) Da(-1) and a solvent content of 44.84%.open2
Identifying component modules
A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity
Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs
The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
On Abduction in Design
The mechanism of design reasoning from function to form is addressed by examining the possibility of explaining it as abduction. We propose a new interpretation to some definitions of innovative abduction, to show first that the concept, idea, as the basis for solution must be present in the inference, and second, that the reasoning from function to form is best modeled as a two-step inference, both of the innovative abduction pattern. This double-abductive reasoning is shown also to be the main form of reasoning in the empirically-derived “parameter analysis” method of conceptual design. Finally, the introduction of abduction into design theory is critically assessed, and in so doing, topics for future research are suggested
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Prognostic value of changes in serum carcinoembryonic antigen levels for preoperative chemoradiotherapy response in locally advanced rectal cancer
BACKGROUND: Preoperative chemoradiotherapy (CRT) is a standard treatment modality for locally advanced rectal cancer. However, CRT alone cannot improve overall survival. Approximately 20% of patients with CRT-resistant tumors show disease progression. Therefore, predictive factors for treatment response are needed to identify patients who will benefit from CRT. We theorized that the prognosis may vary if patients are classified according to pre- to post-CRT changes in carcinoembryonic antigen (CEA) levels.
AIM: To identify patients with locally advanced rectal cancer for preoperative chemoradiotherapy based on carcinoembryonic antigen levels.
METHODS: We retrospectively included locally advanced rectal cancer patients who underwent preoperative CRT and curative resection between 2011 and 2017. Patients were assigned to groups A, B, and C based on pre- and post-CRT serum CEA levels: Both > 5; pre > 5 and post RESULTS: The cohort comprised 145 patients; of them, 27, 43, and 65 belonged to groups A, B, and C, respectively, according to changes in serum CEA levels before and after CRT. Pre- (P < 0.001) and post-CRT (P < 0.001) CEA levels and the ratio of down-staging (P = 0.013) were higher in Groups B and C than in Group A. The ratio of pathologic tumor regression grade 0/1 significantly differed among the groups (P = 0.003). Group C had the highest number of patients showing pCR (P < 0.001). Most patients with pCR showed pre- and post-CRT CEA levels < 5 ng/mL (P < 0.001, P = 0.008). Pre- and post-CRT CEA levels were important risk factors for pCR (OR = 18.71; 95%CI: 4.62-129.51, P < 0.001) and good response (OR = 5.07; 95%CI: 1.92-14.83, P = 0.002), respectively. Pre-CRT neutrophil-lymphocyte ratio and post-CRT T >/= 3 stage were also prognostic factors for pCR or good response.
CONCLUSION: Pre- and post-CRT CEA levels, as well as change in CEA levels, were prognostic markers for treatment response to CRT and may facilitate treatment individualization for rectal cancer
Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays
We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using
360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector.
The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ)
charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which
the pions are from Rho0 decay. The latter case also encompasses exotic
interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho
hypotheses are compatible with our data. Since 3S1 is untenable on other
grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872).
Models for different J/Psi-Rho angular momenta L are considered. Flexibility in
the models, especially the introduction of Rho-Omega interference, enable good
descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
- …
