152 research outputs found
CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments
We study electroweak baryogenesis and electric dipole moments in the presence
of the two leading-order, non-renormalizable operators in the Higgs sector of
the MSSM. Significant qualitative and quantitative differences from MSSM
baryogenesis arise due to the presence of new CP-violating phases and to the
relaxation of constraints on the supersymmetric spectrum (in particular, both
stops can be light). We find: (1) spontaneous baryogenesis, driven by a change
in the phase of the Higgs vevs across the bubble wall, becomes possible; (2)
the top and stop CP-violating sources can become effective; (3) baryogenesis is
viable in larger parts of parameter space, alleviating the well-known
fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole
moments should be measured if experimental sensitivities are improved by about
one order of magnitude.Comment: 33 pages, 6 figure
The spectrum of Apert syndrome: phenotype, particularities in orthodontic treatment, and characteristics of orthognathic surgery
In the PubMed accessible literature, information on the characteristics of interdisciplinary orthodontic and surgical treatment of patients with Apert syndrome is rare. The aim of the present article is threefold: (1) to show the spectrum of the phenotype, in order (2) to elucidate the scope of hindrances to orthodontic treatment, and (3) to demonstrate the problems of surgery and interdisciplinary approach. Children and adolescents who were born in 1985 or later, who were diagnosed with Apert syndrome, and who sought consultation or treatment at the Departments of Orthodontics or Craniomaxillofacial Surgery at the Dental School of the University Hospital of Münster (n = 22; 9 male, 13 female) were screened. Exemplarily, three of these patients (2 male, 1 female), seeking interdisciplinary (both orthodontic and surgical treatment) are presented. Orthodontic treatment before surgery was performed by one experienced orthodontist (AH), and orthognathic surgery was performed by one experienced surgeon (UJ), who diagnosed the syndrome according to the criteria listed in OMIM™. In the sagittal plane, the patients suffered from a mild to a very severe Angle Class III malocclusion, which was sometimes compensated by the inclination of the lower incisors; in the vertical dimension from an open bite; and transversally from a single tooth in crossbite to a circular crossbite. All patients showed dentitio tarda, some impaction, partial eruption, idopathic root resorption, transposition or other aberrations in the position of the tooth germs, and severe crowding, with sometimes parallel molar tooth buds in each quarter of the upper jaw. Because of the severity of malocclusion, orthodontic treatment needed to be performed with fixed appliances, and mainly with superelastic wires. The therapy was hampered with respect to positioning of bands and brackets because of incomplete tooth eruption, dense gingiva, and mucopolysaccharide ridges. Some teeth did not move, or moved insufficiently (especially with respect to rotations and torque) irrespective of surgical procedures or orthodontic mechanics and materials applied, and without prognostic factors indicating these problems. Establishing occlusal contact of all teeth was difficult. Tooth movement was generally retarded, increasing the duration of orthodontic treatment. Planning of extractions was different from that of patients without this syndrome. In one patient, the sole surgical procedure after orthodontic treatment with fixed appliances in the maxilla and mandible was a genioplasty. Most patients needed two- jaw surgery (bilateral sagittal split osteotomy [BSSO] with mandibular setback and distraction in the maxilla). During the period of distraction, the orthodontist guided the maxilla into final position by means of bite planes and intermaxillary elastics. To our knowledge, this is the first article in the PubMed accessible literature describing the problems with respect to interdisciplinary orthodontic and surgical procedures. Although the treatment results are not perfect, patients undergoing these procedures benefit esthetically to a high degree. Patients need to be informed with respect to the different kinds of extractions that need to be performed, the increased treatment time, and the results, which may be reached using realistic expectations
Rescuing Loading Induced Bone Formation at Senescence
The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential
Apoptotic HPV Positive Cancer Cells Exhibit Transforming Properties
Previous studies have shown that DNA can be transferred from dying engineered cells to neighboring cells through the phagocytosis of apoptotic bodies, which leads to cellular transformation. Here, we provide evidence of an uptake of apoptotic-derived cervical cancer cells by human mesenchymal cells. Interestingly, HeLa (HPV 18+) or Ca Ski (HPV16+) cells, harboring integrated high-risk HPV DNA but not C-33 A cells (HPV-), were able to transform the recipient cells. Human primary fibroblasts engulfed the apoptotic bodies effectively within 30 minutes after co-cultivation. This mechanism is active and involves the actin cytoskeleton. In situ hybridization of transformed fibroblasts revealed the presence of HPV DNA in the nucleus of a subset of phagocytosing cells. These cells expressed the HPV16/18 E6 gene, which contributes to the disruption of the p53/p21 pathway, and the cells exhibited a tumorigenic phenotype, including an increased proliferation rate, polyploidy and anchorage independence growth. Such horizontal transfer of viral oncogenes to surrounding cells that lack receptors for HPV could facilitate the persistence of the virus, the main risk factor for cervical cancer development. This process might contribute to HPV-associated disease progression in vivo
Genome-Wide Transcriptomic Analysis of Intestinal Tissue to Assess the Impact of Nutrition and a Secondary Nematode Challenge in Lactating Rats
Gastrointestinal nematode infection is a major challenge to the health and welfare of mammals. Although mammals eventually acquire immunity to nematodes, this breaks down around parturition, which renders periparturient mammals susceptible to re-infection and an infection source for their offspring. Nutrient supplementation reduces the extent of periparturient parasitism, but the underlying mechanisms remain unclear. Here, we use a genome wide approach to assess the effects of protein supplementation on gene expression in the small intestine of periparturient rats following nematode re-infection.The use of a rat whole genome expression microarray (Affymetrix Gene 1.0ST) showed significant differential regulation of 91 genes in the small intestine of lactating rats, re-infected with Nippostrongylus brasiliensis compared to controls; affected functions included immune cell trafficking, cell-mediated responses and antigen presentation. Genes with a previously described role in immune response to nematodes, such as mast cell proteases, and intelectin, and others newly associated with nematode expulsion, such as anterior gradient homolog 2 were identified. Protein supplementation resulted in significant differential regulation of 64 genes; affected functions included protein synthesis, cellular function and maintenance. It increased cell metabolism, evident from the high number of non-coding RNA and the increased synthesis of ribosomal proteins. It regulated immune responses, through T-cell activation and proliferation. The up-regulation of transcription factor forkhead box P1 in unsupplemented, parasitised hosts may be indicative of a delayed immune response in these animals.This study provides the first evidence for nutritional regulation of genes related to immunity to nematodes at the site of parasitism, during expulsion. Additionally it reveals genes induced following secondary parasite challenge in lactating mammals, not previously associated with parasite expulsion. This work is a first step towards defining disease predisposition, identifying markers for nutritional imbalance and developing sustainable measures for parasite control in domestic mammals
Evidence for a Common Toolbox Based on Necrotrophy in a Fungal Lineage Spanning Necrotrophs, Biotrophs, Endophytes, Host Generalists and Specialists
The Sclerotiniaceae (Ascomycotina, Leotiomycetes) is a relatively recently evolved lineage of necrotrophic host generalists, and necrotrophic or biotrophic host specialists, some latent or symptomless. We hypothesized that they inherited a basic toolbox of genes for plant symbiosis from their common ancestor. Maintenance and evolutionary diversification of symbiosis could require selection on toolbox genes or on timing and magnitude of gene expression. The genes studied were chosen because their products have been previously investigated as pathogenicity factors in the Sclerotiniaceae. They encode proteins associated with cell wall degradation: acid protease 1 (acp1), aspartyl protease (asps), and polygalacturonases (pg1, pg3, pg5, pg6), and the oxalic acid (OA) pathway: a zinc finger transcription factor (pac1), and oxaloacetate acetylhydrolase (oah), catalyst in OA production, essential for full symptom production in Sclerotinia sclerotiorum. Site-specific likelihood analyses provided evidence for purifying selection in all 8 pathogenicity-related genes. Consistent with an evolutionary arms race model, positive selection was detected in 5 of 8 genes. Only generalists produced large, proliferating disease lesions on excised Arabidopsis thaliana leaves and oxalic acid by 72 hours in vitro. In planta expression of oah was 10–300 times greater among the necrotrophic host generalists than necrotrophic and biotrophic host specialists; pac1 was not differentially expressed. Ability to amplify 6/8 pathogenicity related genes and produce oxalic acid in all genera are consistent with the common toolbox hypothesis for this gene sample. That our data did not distinguish biotrophs from necrotrophs is consistent with 1) a common toolbox based on necrotrophy and 2) the most conservative interpretation of the 3-locus housekeeping gene phylogeny – a baseline of necrotrophy from which forms of biotrophy emerged at least twice. Early oah overexpression likely expands the host range of necrotrophic generalists in the Sclerotiniaceae, while specialists and biotrophs deploy oah, or other as-yet-unknown toolbox genes, differently
Genetics of asthma: a molecular biologist perspective
Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis
Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes.The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations.Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths is more phylogenetically conserved than previously postulated
Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation
- …
