1,025 research outputs found
Massive Quantum Liquids from Holographic Angel's Trumpets
We explore the small-temperature regime in the deconfined phase of massive
fundamental matter at finite baryon number density coupled to the 3+1
dimensional N=4 SYM theory. In this setting, we can demonstrate a new type of
non-trivial temperature-independent scaling solutions for the probe brane
embeddings. Focusing mostly on matter supported in 2+1 dimensions, the
thermodynamics indicate that there is a quantum liquid with interesting
density-dependent low-temperature physics. We also comment about 3+1 and 1+1
dimensional systems, where we further find for example a new thermodynamic
instability.Comment: 18+1 pages, 6 figures; replaced fig. 6 and comments in sec. 5.2;
minor explanations added and typos fixed, final version published in JHEP
(modulo fig. 3); factor of \sqrt{\lambda} and corresponding comments fixe
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications
A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 mu m, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm(2), and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells.open1
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
A comparison of surgical outcomes between endoscopic and robotically assisted thyroidectomy: the authors’ initial experience
Background: The gasless, transaxillary endoscopic thyroidectomy (GTET) offers a distinct advantage over the conventional open operation by leaving no visible neck scar, and in an attempt to improve its ergonomics and surgical outcomes, the robotically assisted thyroidectomy (RAT) was introduced. The RAT uses the same endoscopic route as the GTET but with the assistance of the da Vinci S robotic system. Excellent results for RAT have been reported, but it remains unclear whether RAT offers any potential benefits over GTET. Methods: From June to December 2009, 46 patients underwent endoscopic thyroidectomy. Of these patients, 39 had surgery without the robot (GTET) and 7 had surgery with the robot (RAT). Demographics, surgical indications, operative findings, and postoperative outcomes were compared between the two groups. All the patients were followed up for at least 6 months after surgery. Results: Patient demographics, surgical indications, and extent of resection were similar between the two groups. The median total procedure time was significantly longer for RAT (149 min) than for GTET (100 min; p = 0.018), but the contralateral recurrent laryngeal nerve was more likely to identified in RAT (100%) than in GTET (42.9%; p = 0.070). On the average, GTET needed one more surgical assistant than RAT (1 vs. 0; ppublished_or_final_versionSpringer Open Choice, 21 Feb 201
Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia
Although manganese is an essential trace metal, little is known about its transport and homeostatic regulation. Here we have identified a cohort of patients with a novel autosomal recessive manganese transporter defect caused by mutations in SLC39A14. Excessive accumulation of manganese in these patients results in rapidly progressive childhood-onset parkinsonism-dystonia with distinctive brain magnetic resonance imaging appearances and neurodegenerative features on post-mortem examination. We show that mutations in SLC39A14 impair manganese transport in vitro and lead to manganese dyshomeostasis and altered locomotor activity in zebrafish with CRISPR-induced slc39a14 null mutations. Chelation with disodium calcium edetate lowers blood manganese levels in patients and can lead to striking clinical improvement. Our results demonstrate that SLC39A14 functions as a pivotal manganese transporter in vertebrates
Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?
Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007
program and IF Development Grant (AJS); and pre-doctoral fellowships to
FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research
Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass
Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa
Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de
Referência Estratégico Nacional (QREN), através do Fundo Europeu de
Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio
Societal-level versus individual-level predictions of ethical behavior: a 48-society study of collectivism and individualism
Is the societal-level of analysis sufficient today to understand the values of those in the global workforce? Or are individual-level analyses more appropriate for assessing the influence of values on ethical behaviors across country workforces? Using multi-level analyses for a 48-society sample, we test the utility of both the societal-level and individual-level dimensions of collectivism and individualism values for predicting ethical behaviors of business professionals. Our values-based behavioral analysis indicates that values at the individual-level make a more significant contribution to explaining variance in ethical behaviors than do values at the societal-level. Implicitly, our findings question the soundness of using societal-level values measures. Implications for international business research are discussed
Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s=8 TeV with the ATLAS detector
An analysis is presented of events containing jets including at least one b-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb−1 of pp collisions at √s=8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b′-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b′-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models
- …
