874 research outputs found
End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels
Multi-hop relay channels use multiple relay stages, each with multiple relay
nodes, to facilitate communication between a source and destination.
Previously, distributed space-time codes were proposed to maximize the
achievable diversity-multiplexing tradeoff, however, they fail to achieve all
the points of the optimal diversity-multiplexing tradeoff. In the presence of a
low-rate feedback link from the destination to each relay stage and the source,
this paper proposes an end-to-end antenna selection (EEAS) strategy as an
alternative to distributed space-time codes. The EEAS strategy uses a subset of
antennas of each relay stage for transmission of the source signal to the
destination with amplify and forwarding at each relay stage. The subsets are
chosen such that they maximize the end-to-end mutual information at the
destination. The EEAS strategy achieves the corner points of the optimal
diversity-multiplexing tradeoff (corresponding to maximum diversity gain and
maximum multiplexing gain) and achieves better diversity gain at intermediate
values of multiplexing gain, versus the best known distributed space-time
coding strategies. A distributed compress and forward (CF) strategy is also
proposed to achieve all points of the optimal diversity-multiplexing tradeoff
for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative
communication in the Eurasip Journal on Wireless Communication and Networkin
High temperature optical absorption investigation into the electronic transitions in sol–gel derived C12A7 thin films
Optical absorption into 6 mm thick sol–gel derived films, annealed at 1300 °C of 12CaO·7Al2O3 calcium aluminate binary compound on MgO〈100〉 single crystal substrates was studied at temperatures ranging from room temperature to 300 °C. Experimental data were analysed in both Tauc and Urbach regions. The optical band gap decreased from 4.088 eV at 25 °C to 4.051 eV at 300 °C, while Urbach energy increased from 0.191 eV at 25 °C to 0.257 eV at 300 °C. The relationship between the optical band gap and the Urbach energy at different temperatures showed an almost linear relationship from which the theoretical values of 4.156 and 0.065 eV were evaluated for the band gap energy and Urbach energy of a 12CaO·7Al2O3 crystal with zero structural disorder at 0 K
Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis
Increased glucose uptake mediated by glucose
transporters and reliance on glycolysis are common features
of malignant cells. Hypoxia-inducible factor-1α supports the
adaptation of hypoxic cells by inducing genes related to
glucose metabolism. The contribution of glucose transporter
(GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to
tumor behavior and their prognostic value in head and neck
cancers remains unclear. The aim of this study was to examine
the predictive value of GLUT1, GLUT3, and HIF-1α messenger
RNA (mRNA)/protein expression as markers of tumor
aggressiveness and prognosis in laryngeal cancer. The level of
hypoxia/metabolic marker genes was determined in 106 squamous
cell laryngeal cancer (SCC) and 73 noncancerous
matched mucosa (NCM) controls using quantitative realtime
PCR. The related protein levels were analyzed by
Western blot. Positive expression of SLC2A1, SLC2A3, and
HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC
specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer
samples. Higher levels of mRNA/protein for GLUT1 and
HIF-1α were noted in SCC compared to NCM (p<0.05).
SLC2A1 was found to have a positive relationship with grade,
tumor front grading (TFG) score, and depth and mode of
invasion (p<0.05). SLC2A3 was related to grade and invasion
type (p<0.05). There were also relationships of HIF-1α with
pTNM, TFG scale, invasion depth and mode, tumor recurrences,
and overall survival (p<0.05). In addition, more advanced
tumors were found to be more likely to demonstrate
positive expression of these proteins. In conclusion, the
hypoxia/metabolic markers studied could be used as molecular
markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory
fund of the Department of Cytobiochemistry, University of Łódź, Poland
(506/811), and by grant fromtheNational Science Council, Poland (N403
043 32/2326)
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
Bacterial diversity and community composition from seasurface to subseafloor
© The International Society for Microbial Ecology, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 979–989, doi:10.1038/ismej.2015.175.We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (greater than or equal to1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.This study was funded by the Biological Oceanography Program of the US National Science Foundation (grant OCE-0752336) and by the NSF-funded Center for Dark Energy Biosphere Investigations (grant NSF-OCE-0939564)
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c
Cortico-basal ganglia circuits are critical for speech and language and are implicated in autism spectrum disorder, in which language function can be severely affected. We demonstrate that in the mouse striatum, the gene Foxp2 negatively interacts with the synapse suppressor gene Mef2c. We present causal evidence that Mef2c inhibition by Foxp2 in neonatal mouse striatum controls synaptogenesis of corticostriatal inputs and vocalization in neonates. Mef2c suppresses corticostriatal synapse formation and striatal spinogenesis, but can itself be repressed by Foxp2 through direct DNA binding. Foxp2 deletion de-represses Mef2c, and both intrastriatal and global decrease of Mef2c rescue vocalization and striatal spinogenesis defects of Foxp2-deletion mutants. These findings suggest that Foxp2-Mef2C signaling is critical to corticostriatal circuit formation. If found in humans, such signaling defects could contribute to a range of neurologic and neuropsychiatric disorders.National Institutes of Health (U.S.) (Grant R37 HD028341)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Award R37 HD028341
The role of liquid based cytology and ancillary techniques in the peritoneal washing analysis: our institutional experience
Background
The cytological analysis of peritoneal effusions serves as a diagnostic and prognostic aid for either primary or metastatic diseases. Among the different cytological preparations, liquid based cytology (LBC) represents a feasible and reliable method ensuring also the application of ancillary techniques (i.e immunocytochemistry-ICC and molecular testing).
Methods
We recorded 10348 LBC peritoneal effusions between January 2000 and December 2014. They were classified as non-diagnostic (ND), negative for malignancy-NM, atypical-suspicious for malignancy-SM and positive for malignancy-PM.
Results
The cytological diagnosis included 218 ND, 9.035 NM, 213 SM and 882 PM. A total of 8048 (7228 NM, 115SM, 705 PM) cases with histological follow-up were included. Our NM included 21 malignant and 7207 benign histological diagnoses. Our 820 SMs+PMs were diagnosed as 107 unknown malignancies (30SM and 77PM), 691 metastatic lesions (81SM and 610PM), 9 lymphomas (2SM and 7PM), 9 mesotheliomas (1SM and 8SM), 4 sarcomas (1SM and 3PM). Primary gynecological cancers contributed with 64% of the cases. We documented 97.4% sensitivity, 99.9% specificity, 98% diagnostic accuracy, 99.7% negative predictive value (NPV) and 99.7% positive predictive value (PPV). Furthermore, the morphological diagnoses were supported by either 173 conclusive ICC results or 50 molecular analyses. Specifically the molecular testing was performed for the EGFR and KRAS mutational analysis based on the previous or contemporary diagnoses of Non Small Cell Lung Cancer (NSCLC) and colon carcinomas. We identified 10 EGFR in NSCCL and 7 KRAS mutations on LBC stored material.
Conclusions
Peritoneal cytology is an adjunctive tool in the surgical management of tumors mostly gynecological cancers. LBC maximizes the application of ancillary techniques such as ICC and molecular analysis with feasible diagnostic and predictive yields also in controversial cases.info:eu-repo/semantics/publishedVersio
Post-mortem assessment in vascular dementia: advances and aspirations.
BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses
- …
