202 research outputs found

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    Ant-like task allocation and recruitment in cooperative robots

    Get PDF
    One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects

    Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin

    Full text link
    © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO 2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Social density processes regulate the functioning and performance of foraging human teams

    Get PDF
    Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts

    Forest carbon sequestration:the impact of forest management

    Get PDF
    In this chapter, we describe alternative ways in which forests and forestry can help to mítigate climate change, along with the potential impact of these activities. The three carbon storage compartments should be considered inall impact estimates. Carbon content in living biomass is easily estimated via species-specific equations or by applying factors to oven-dry biomass weights (e.g.,lbañez et al.,2002, Herrero et al.,2011,Castaño and Bravo, 2012).Litter carbon content has been analysed in many studies on primary forest productivity, though information regarding the influence of forest management on litter carbon content is less abundant (Blanco et al., 2006). In the last decade,efforts have been made to assess soil carbon in forests, but studies on the effect of forest management on soils show discrepancies (Lindner and Karjalainen,2007).Hoover (2011), for example,found no difference in forest floor carbon stocks among stands subjected to partial or complete harvest treatments in the United States.Instituto Universitario de Gestión Forestal Sostenibl

    Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO<sub>2 </sub>by stimulating the vegetation productivity and accumulation of carbon in biomass.</p> <p>Results</p> <p>This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.</p> <p>Conclusion</p> <p>Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO<sub>2 </sub>concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.</p
    corecore