1,919 research outputs found
On staying grounded and avoiding Quixotic dead ends
The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
Study of the Decays B0 --> D(*)+D(*)-
The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7
million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine
Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4
and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the
first angular analysis of the B0 --> D*+D*- decay and determine that the
CP-even fraction of the final state is greater than 0.11 at 90% CL. Future
measurements of the time dependence of these decays may be useful for the
investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
Measurement of B(/\c->pKpi)
The /\c->pKpi yield has been measured in a sample of two-jet continuum events
containing a both an anticharm tag (Dbar) as well as an antiproton (e+e- ->
Dbar pbar X), with the antiproton in the hemisphere opposite the Dbar. Under
the hypothesis that such selection criteria tag e+e- -> Dbar pbar (/\c) X
events, the /\c->pkpi branching fraction can be determined by measuring the
pkpi yield in the same hemisphere as the antiprotons in our Dbar pbar X sample.
Combining our results from three independent types of anticharm tags, we obtain
B(/\c->pKpi)=(5.0+/-0.5+/-1.2)
Improved Measurement of the Pseudoscalar Decay Constant
We present a new determination of the Ds decay constant, f_{Ds} using 5
million continuum charm events obtained with the CLEO II detector. Our value is
derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of
0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6
+/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We
compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Effects of Fluids on the Macro- and Microcirculations.
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Recommended from our members
The rise of linear borders in world politics
This article argues that the dominance of precise, linear borders as an ideal in the demarcation of territory is an outcome of a relatively recent and ongoing historical process, and that this process has had important effects on international politics since circa 1900. Existing accounts of the origins of territorial sovereignty are in wide disagreement largely because they fail to specify the relationship between territory and borders, often conflating the two concepts. I outline a history of the linearization of borders which is separate from that of territorial sovereignty, having a very different timeline and featuring different actors, and offer an explanation for the dominance of this universalizing system of managing and demarcating space, based on the concept of rationalization. Finally I describe two broad ways in which linearizing borders has affected international politics, by making space divisible in new ways, and underpinning hierarchies by altering the distribution of geographical knowledge resources
- …
