221 research outputs found
Uncertainty management in the IPCC: agreeing to disagree
Looking back over three and a half Assessment Reports, we see that the Intergovernmental Panel on Climate Change (IPCC) has given increasing attention to the management and reporting of uncertainties, but coordination across working groups (WGs) has remained an issue. We argue that there are good reasons for working groups to use different methods to assess uncertainty, thus it is better that working groups agree to disagree rather than seek to bring everybody on one party line.IPCC; uncertainty
Multi-gas Emissions Pathways to Meet Climate Targets
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk' (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths' of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 ∘C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See http://www.simcap.org for EQW-software and dat
Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer
We present a study for the generation of events from a physical process with
deep generative models. The simulation of physical processes requires not only
the production of physical events, but also to ensure these events occur with
the correct frequencies. We investigate the feasibility of learning the event
generation and the frequency of occurrence with Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) to produce events like Monte Carlo
generators. We study three processes: a simple two-body decay, the processes
and including the decay of the top
quarks and a simulation of the detector response. We find that the tested GAN
architectures and the standard VAE are not able to learn the distributions
precisely. By buffering density information of encoded Monte Carlo events given
the encoder of a VAE we are able to construct a prior for the sampling of new
events from the decoder that yields distributions that are in very good
agreement with real Monte Carlo events and are generated several orders of
magnitude faster. Applications of this work include generic density estimation
and sampling, targeted event generation via a principal component analysis of
encoded ground truth data, anomaly detection and more efficient importance
sampling, e.g. for the phase space integration of matrix elements in quantum
field theories.Comment: 24 pages, 10 figure
Forest Fires and Adaptation Options in Europe
This paper presents a quantitative assessment
of adaptation options in the context of forest fires in Europe
under projected climate change. A standalone fire model
(SFM) based on a state-of-the-art large-scale forest fire
modelling algorithm is used to explore fuel removal
through prescribed burnings and improved fire suppression
as adaptation options. The climate change projections are
provided by three climate models reflecting the SRES A2
scenario. The SFM’s modelled burned areas for selected
test countries in Europe show satisfying agreement with
observed data coming from two different sources (European
Forest Fire Information System and Global Fire
Emissions Database). Our estimation of the potential
increase in burned areas in Europe under ‘‘no adaptation’’
scenario is about 200 % by 2090 (compared with
2000–2008). The application of prescribed burnings has the
potential to keep that increase below 50 %. Improvements
in fire suppression might reduce this impact even further,
e.g. boosting the probability of putting out a fire within a
day by 10 % would result in about a 30 % decrease in
annual burned areas. By taking more adaptation options
into consideration, such as using agricultural fields as fire
breaks, behavioural changes, and long-term options,
burned areas can be potentially reduced further than projected
in our analysis.JRC.H.7-Climate Risk Managemen
On the pion-nucleon coupling constant
In view of persisting misunderstanding about the determination of the
pion-nucleon coupling constants in the Nijmegen multienergy partial-wave
analyses of pp, np, and pbar-p scattering data, we present additional
information which may clarify several points of discussion. We comment on
several recent papers addressing the issue of the pion-nucleon coupling
constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0
Singular Spectrum Analysis as a data-driven approach to the analysis of motor adaptation time series
Motor adaptation is a form of learning to re-establish desired movements in novel situations. To probe motor adaptation, one can replicate such conditions experimentally by imposing a sustained perturbation during movement. Exposure to such perturbations initially causes an abrupt change in relevant performance variables, followed by a gradual return to baseline behaviour. The resulting time series exhibit persistent properties related to structural changes in underlying motor control and transitory properties related to trial-to-trial variations. The global trend, signifying the structural change, is often assessed by averaging the time series in predefined bins or nonlinear model fitting. However, these methods to study motor adaptation require a priori decisions to produce accurate fits. Here, we test a data-driven approach called Singular Spectrum Analysis (SSA) to assess the global trend. In SSA, we first decompose the adaptation time series into components that represent either a global trend or additional variations, and secondly, select the component(s) corresponding to the global trend using spectral analysis. In this paper, we will use simulated data to compare the reconstruction performance of SSA with often applied filter and fitting methods in motor adaptation studies and apply SSA to real data obtained during split- belt adaptation. In the simulations, we show that SSA reconstructed the fast-initial component and entire global trends more accurately than the filtering and fitting methods. In addition, we show that SSA also successfully reconstructed global trends from real data. Therefore, the SSA might be useful in motor learning studies to decompose and assess adaptation time series
Anticipatory control of human gait following simulated slip exposure
A cautious gait (CG), marked by wider and shorter steps, is typically employed to mitigate expected perturbations proactively. However, it is not well understood if and how CG is informed by the task requirements. Therefore, we assessed how CG is adjusted to these requirements. Three groups of ten healthy young adults were exposed to a single uninterrupted protocol of treadmill walking that consisted of three distinct phases. Spatiotemporal step characteristics and margins of stability of the unperturbed strides were compared when participants were (i) only warned of a perturbation, (ii) exposed to fifty unilateral (right) slip-like perturbations and (iii) kept unaware of perturbation removal. Only the perturbation intensity predictability differed between groups. This was either kept consistent or pseudo-randomly or randomly varied. Participants walked with wider and shorter steps following the perturbation warning. However, this extinguished in continuing perturbation absence. Next, during perturbation exposure, participants shortened the step of the perturbed but increased the step of the unperturbed leg. This did not differ between groups. Finally, participants persisted in displaying CG on perturbation removal, but this extinguished over time. Collectively, we show that CG is functionally adjusted to the task requirements. These findings may have practical implications for fall-prevention training
Host resistance to rat cytomegalovirus (RCMV) and immune function in adult PVG rats fed herring from the contaminated Baltic Sea
The immunotoxic potential of many classes of environmental contaminants has been well established in laboratory studies, with much attention being focussed on aryl hydrocarbon (Ah)-receptor binding polychlorinated biphenyl (PCB), polychlorinated dibenzo-p-dioxin (PCDD), and polychlorinated dibenzofuran (PCDF) congeners. In a semi-field study, we previously showed that harbour seals (Phoca vitulina) fed herring from the contaminated Baltic Sea had lower natural killer cell activity, T-lymphocyte functionality and delayed-type hypersensitivity responses than seals fed herring from the relatively uncontaminated Atlantic Ocean. While ethical and practical constraints preclude in-depth studies in seals, specific reagents and a wider array of immune function tests allow such studies in laboratory rats. We therefore carried out a feeding study in rats aimed at extending our observations of contaminant-induced immunosuppression in harbour seals. The same two herring batches used in the seal study were freeze-dried, supplemented and fed. to female adult PVG rats for a period of 4 1/4 months. Daily contaminant intakes of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalents (TEQ) were estimated to be 0.3 ng/kg body weight and 1.6 ng/kg in the Atlantic and Baltic groups, respectively. At the end of the feeding experiment, no contaminant-related changes in spleen CD4+/CD8+cellularity, natural killer cell activity, or mitogen-induced proliferative responses of thymus or spleen cells could be detected. However, total thymocyte numbers and thymus CD4+/CD8+ratios were reduced in the Baltic group. A novel model was established to assess the specific T-cell response to rat cytomegalovirus (RCMV). When applied to the feeding study, no differences between the Atlantic and Baltic groups in the RCMV-induced proliferative T-lymphocyte responses could be detected, but virus titres in salivary glands of infected rats of the Baltic Sea group were higher. These elevated RCMV titres and changes in thymus cellularity suggest that the dietary exposure to low levels of contaminants may have been immunotoxic at a level which our immune function test could not otherwise detect. While the herring diet per se appeared to have an effect on several immune function parameters, lower plasma thyroid hormone levels in the Baltic Sea group of rats confirmed that exposure to the environmental mixture of contaminants led to adverse PHAH-related health effects
From Urban Façade to Green Foundation: Re-Imagining the Garden City to Manage Climate Risks
Climate risk management evolves rapidly from one additional challenge for urban planning into a radical driver of urban development. In addition to fundamental changes in urban planning to increase long-term resilience, the creation of new opportunities for sustainable transformation is imperative. While urban planners increasingly add climate risks to their menu, implementation of effective action is lagging. To reduce urban infrastructure's vulnerability to heat and flooding, cities often rely on short-term incremental adjustments rather than considering longer-term transformative solutions. The transdisciplinary co-development of inspiring urban visions with local stakeholders over timescales of decades or more, can provide an appealing prospect of the city we desire - a city that is attractive to live and work in, and simultaneously resilient to climate hazards. Taking an historic perspective, we argue that re-imagining historical urban planning concepts, such as the late 19th-century garden city until early 21st century urban greening through nature-based solutions, is a pertinent example of how climate risk management can be combined with a wide-range of socio-economic and environmental goals. Climate knowledge has expanded rapidly over the last decades. However, climate experts mainly focus on the refinement of and access to observations and model results, rather than on translating their knowledge effectively to meet today’s urban planning needs. In this commentary we discuss how the two associated areas (urban planning and climate expertise) should be more fully integrated to address today’s long-term challenges effectively
Adaptation measures in the EU: Policies, costs, and economic assessment. "Climate Proofing" of key EU policies
- …
