9 research outputs found
A simulation-optimization methodology to model urban catchments under non-stationary extreme rainfall events.
Urban drainage is being affected by Climate Change, whose effects are likely to alter the intensity of rainfall events and result in variations in peak discharges and runoff volumes which stationary-based designs might not be capable of dealing with. Therefore, there is a need to have an accurate and reliable means to model the response of urban catchments under extreme precipitation events produced by Climate Change. This research aimed at optimizing the stormwater modelling of urban catchments using Design of Experiments (DOE), in order to identify the parameters that most influenced their discharge and simulate their response to severe storms events projected for Representative Concentration Pathways (RCPs) using a statistics-based Climate Change methodology. The application of this approach to an urban catchment located in Espoo (southern Finland) demonstrated its capability to optimize the calibration of stormwater simulations and provide robust models for the prediction of extreme precipitation under Climate Change.This paper was possible thanks to the research projects RHIVU (Ref. BIA2012-32463) and SUPRIS-SUReS (Ref. BIA 2015-65240-C2-1-R MINECO/FEDER, UE), financed by the Spanish Ministry of Economy and Competitiveness with funds from the State General Budget (PGE) and the European Regional Development Fund (ERDF). The authors wish to express their gratitude to all the entities that provided the data necessary to develop this research: Helsinki Region Environmental Services Authority HSY, Map Service of Espoo, National Land Survey of Finland, Geological Survey of Finland, EURO-CORDEX and European Climate Assessment & Dataset
Inherent errors in pollutant build-up estimation in considering urban land use as a lumped parameter
Stormwater quality modelling results is subject to uncertainty. The variability of input parameters is an important source of overall model error. An in-depth understanding of the variability associated with input parameters can provide knowledge on the uncertainty associated with these parameters and consequently assist in uncertainty analysis of stormwater quality models and the decision making based on modelling outcomes. This paper discusses the outcomes of a research study undertaken to analyse the variability related to pollutant build-up parameters in stormwater quality modelling. The study was based on the analysis of pollutant build-up samples collected from 12 road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary appreciably even within the same land use. Therefore, using land use as a lumped parameter would contribute significant uncertainties in stormwater quality modelling. Additionally, it was also found that the variability in pollutant build-up can also be significant depending on the pollutant type. This underlines the importance of taking into account specific land use characteristics and targeted pollutant species when undertaking uncertainty analysis of stormwater quality models or in interpreting the modelling outcomes
