4,490 research outputs found
Experimental demonstration of a long-period grating based on the sampling theorem
We demonstrate experimentally the feasibility of a long-period grating whose index change pattern is in the form of sampling a raised-cosine function. We call such a grating a long-period grating based on the sampling theorem (LPGST). The LPGST is thermo-optically induced by an array of electrodes with individual widths. The array period is equal to the sampling period of 100 ??m, and the period of the sampled function is 395 ??m. A fabricated polymer long-period waveguide grating using the LPGST has a desired resonance band in its transmission spectrum, which is generated by the periodicity of the sampled function.open2
PRRT2 gene variant in a child with dysmorphic features, congenital microcephaly, and severe epileptic seizures: genotype-phenotype correlation?
BACKGROUND: Mutations in Proline-rich Transmembrane Protein 2 (PRRT2) have been primarily associated with individuals presenting with infantile epilepsy, including benign familial infantile epilepsy, benign infantile epilepsy, and benign myoclonus of early infancy, and/or with dyskinetic paroxysms such as paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, and exercise-induced dyskinesia. However, the clinical manifestations of this disorder vary widely. PRRT2 encodes a protein expressed in the central nervous system that is mainly localized in the pre-synaptic neurons and is involved in the modulation of synaptic neurotransmitter release. The anomalous function of this gene has been proposed to cause dysregulation of neuronal excitability and cerebral disorders. CASE PRESENTATION: We hereby report on a young child followed-up for three years who presents with a spectrum of clinical manifestations such as congenital microcephaly, dysmorphic features, severe intellectual disability, and drug-resistant epileptic encephalopathy in association with a synonymous variant in PRRT2 gene (c.501C > T; p.Thr167Ile) of unknown clinical significance variant (VUS) revealed by diagnostic exome sequencing. CONCLUSION: Several hypotheses have been advanced on the specific role that PRRT2 gene mutations play to cause the clinical features of affected patients. To our knowledge, the severe phenotype seen in this case has never been reported in association with any clinically actionable variant, as the missense substitution detected in PRRT2 gene. Intriguingly, the same mutation was reported in the healthy father: the action of modifying factors in the affected child may be hypothesized. The report of similar observations could extend the spectrum of clinical manifestations linked to this mutation
An improved algorithm for learning long-term dependency problems in adaptive processing of data structures
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Spin Discrimination in Three-Body Decays
The identification of the correct model for physics beyond the Standard Model
requires the determination of the spin of new particles. We investigate to
which extent the spin of a new particle can be identified in scenarios
where it decays dominantly in three-body decays . Here we
assume that is a candidate for dark matter and escapes direct detection at
a high energy collider such as the LHC. We show that in the case that all
intermediate particles are heavy, one can get information on the spins of
and at the LHC by exploiting the invariant mass distribution of the two
standard model fermions. We develop a model-independent strategy to determine
the spins without prior knowledge of the unknown couplings and test it in a
series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Electromagnetic performances and main parameter sensitivity effect on unbalance magnetic flux in a New Single‑Phase FEFSM with segmental rotor
Three-phase field excitation flux switching motor (FEFSM) with salient rotor structure has been introduced with their advantages
of rotor easy temperature elimination and controllable FEC magnetic flux. Yet, the salient rotor structure is found to
lead a longer magnetic flux path between stator and rotor parts, producing a weak flux linkage along with low torque performances.
Hence, a new structure of single-phase FEFSM using segmental rotor with non-overlap windings is proposed with
advantages of shorter magnetic flux path, light weight and robust rotor structure. Analysis on fundamental magnetic flux
characteristics, armature and FEC magnetic flux linkages, cogging torque, back-Emf, various torque capabilities, refinement
of unbalance magnetic flux, and torque-power versus speed characteristics are conducted using 2D FEA through JMAG
Designer version 15. The results show that magnetic flux amplitude ratio has been improved by 41.2% while the highest
torque and power achieved are 1.45 Nm and 343.8 W, respectively
Probing CP Violation with and without Momentum Reconstruction at the LHC
We study the potential to observe CP-violating effects in SUSY cascade decay
chains at the LHC. We consider squark and gluino production followed by
subsequent decays into neutralinos with a three-body leptonic decay in the
final step. Asymmetries composed by triple products of momenta of the final
state particles are sensitive to CP-violating effects. Due to large boosts
these asymmetries can be difficult to observe at a hadron collider. We show
that using all available kinematic information one can reconstruct the decay
chains on an event-by-event basis even in the case of 3-body decays, neutrinos
and LSPs in the final state. We also discuss the most important experimental
effects like major backgrounds and momentum smearing due to finite detector
resolution. We show that with 300 fb of collected data, CP violation may
be discovered at the LHC for a wide range of the phase of the bino mass
parameter .Comment: Version accepted for publication in JHEP. Clarifications added on the
assumptions used for plots. New references adde
IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis
IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)(2) subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)(2) on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)(2) model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)(2) inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor gamma t and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)(2) suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling.1156Ysciescopu
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
- …
