210 research outputs found
The Potency Of Metacognitive Learning To Foster Mathematical Logical Thinking
The ability of thinking logically needs to be developed due to the fact that it is an essential basic skill. Logical thinking affects that giving reason must be true, and that a sequence of assumptions is based on the high truth value. Mathematics is a subject that functions to train students to think logically. The understanding of logic will help students to arrange the proof that support through process to finally arrive at a conclusion. Currently, metacognition is viewed as an essential element of learning. It refers to someone knowledge of processes and the result itself or of that connected to the process. Metacognition is needed when student solves the task that needs argumentation and logical understanding. In order to help student to skillful think logically, mathematics learning must be designed as such so that the condition will raise the skill of metacognitive acts.
Key words: metacognitive learning, mathematical logical thinkin
Pembelajaran Mata Kuliah Struktur Aljabar Yang Berbasis Komputer Dan Tugas Terstruktur Untuk Menggali Potensi Kreatif Dan Daya Matematik Mahasiswa
Mata kuliah Struktur Aljabar merupakan suatu mata kuliah yang memuat konsep –konsep yang
abstrak, karena sifat dari mata kuliah tersebut seperti itu maka mahasiswa seringkali mendapat
kesulitan dalam mempelajarinya. Untuk mengatasi hal tersebut, seorang dosen harus mampu
membantu dan mengarahkan mahasiswanya supaya dapat mempelajari materi‐materi pada mata
kuliah tersebut menjadi lebih menarik dan bermakna. Pemanfaatan media komputer (ISETL) dan
pemberian tugas yang menarik dan menantang diharapkan dapat menjadi stimulus bagi mahasiswa
untuk belajar yang dapat menggali potensi kreatif dan menggali daya matematiknya. Penelitian
eksperimen untuk menggali potensi kreatif dan daya matematik telah dilakukan dengan memanfaatkan
media komputer dan tugas terstruktur.
Kata Kunci : ISETL, tugas terstruktur, daya matematik dan kreativitas matematik
Mengembangkan Kemampuan Berpikir Kreatif Siswa Sekolah Menengah Atas (SMA) Melalui Pembelajaran Kontekstual Yang Menekankan Pada Intuisi Matematis
PENINGKATAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS MELALUI PENDEKATAN MATEMATIKA REALISTIK
Pembelajaran matematika di SMP sampai saat ini masih dengan gaya konvensional,
umumnya siswa masih kurang diberi kesempat untuk aktif membangun pengetahuannya.
Hal ini berakibat pada rendahnya kemampuan pemecahan masalah matematis siswa. Salah
satu alternatif pendekatan pembelajaran yang dapat meningkatkan kemampuan pemecahan
masalah matematis siswa adalah melalui pendekatan Pendidikan Matematika Realistik
(PMR). PMR berpandangan bahwa belajar matematika harus mengarahkan siswa kepada
penggunaan berbagai situasi (konteks), yang dirasakan bermakna sehingga menjadi sumber
belajar. Permasalahan utama dalam penelitian ini adalah: Apakah pembelajaran matematika
yang menggunakan PMR dapat meningkatkan kemampuan pemecahan masalah matematis
siswa? Penelitian ini adalah penelitian eksperimen, yang menggunakan desain eksperimen
kelompok kontrol pretes-postes. Populasi penelitian adalah seluruh siswa kelas VII SMP di
Kota Bekasi, sedangkan sampel diambil dari dua sekolah level sedang, yang masing-masing
sekolah diambil dua kelas dengan teknik purposive sampling. Kelompok eksperimen diberi
perlakuan pembelajaran dengan PMR sedangkan kelompok kontrol tidak diberi perlakuan,
pembelajarannya dengan PMB. Instrumen yang digunakan adalah: (1) tes kemampuan
pemecahan masalah matematis; (2) lembar observasi; (3) angket respon siswa; dan (4)
lembar pedoman wawancara. Untuk keperluan pengujian hipotesis, data dianalisis dengan
uji-t, uji ANOVA, dan dilengkapi dengan analisis deskriptif dan kualitatif. Berdasarkan
hasil analisis data diperoleh kesimpulan: Kemampuan pemecahan masalah matematis siswa
yang pembelajaran menggunakan PMR lebih baik daripada siswa yang pembelajarannya
menggunakan PMB, untuk seluruh siswa maupun berdasarkan kelompok kemampun
matematis siswa (tinggi, sedang, rendah). Ada pengaruh secara bersama yang signifikan
antara pembelajaran PMR dan PMB dengan kelompok kemampuan matematis siswa
(tinggi, sedang, rendah) dalam kemampuan pemecahan masalah matematis siswa.
Peningkatan kemampuan pemecahan masalah matematis siswa yang pembelajarannya
menggunakan PMR, pada siswa kemampuan tinggi lebih baik daripada siswa kemampuan
sedang dan rendah. Aktivitas siswa dalam proses pembelajaran yang menggunakan PMR,
sangat aktif. Respon siswa terhadap pembelajaran yang menggunakan PMR, positif.
Kata kunci: Kemampuan pemecahan masalah matematis, pendekatan pendidikan
matematika realistik
Capaian Level Berpikir Reflektif Mahasiswa Program Remidial Perkuliahan Fisika Matematika 1 Berbasis Cognitive Apprenticeship Instruction
This research is a mixed method research design which aimed to determine the students' reflective thinking level after they experienced cognitive apprenticeship instruction (CAI) based learning program in the Mathematical Physics 1. Syntaxes of CAI program are modeling, coaching, articulation, reflection, and exploration. The data was collected from six remedial students' performances of reflective thinking skill test and was analyzed using qualitative approach by triangulating it with observation and questionnaire, as well as interview results. The data analysis showed that the remedial students' level was on the second phase of reflective thinking skill, namely understanding level. Several criterias of reflective thinking skill were still poor achieved by the students. Therefore, the more effective strategies applied in every syntax of CAI are required in order to improve the students' level of reflective thinking
Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL
The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach with contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches
Enhancing Students\u27 Communication Skills Through Treffinger Teaching Model
This research aims to investigate, compare, and describe the achievement and enhancement of students\u27 mathematical communication skills (MCS). It based on the prior mathematical knowledge (PMK) category (high, medium and low) by using Treffinger models (TM) and conventional learning (CL). This research is an experimental study with the population of all students of Mathematics Education Department who took Discrete Mathematics subject matter of one university in the city of Ternate. The results show that (1) the achievement and enhancement of MCS students that used TM are higher than the students learning using CL; (2) Based on the categories of PMK, the achievement and enhancement of MCS of students using TM are also higher than those learning with CL; and (3) There was no interaction effect between learning (TM and CL) and PMK to the achievement and enhancement of MCS of the students
Korelasi Penguasaan Materi Matematika Dasar Dengan Penguasaan Materi Pendahuluan Fisika Inti
Nuclear Physics Introduction (NPI) is a course in Physics Education Program in a teacher education program in Ambon. It had been constrained by the lack of students' mastery on basic mathematics. Moreover, the number of lecturers and rooms were limited. In order to overcome the problems, a web based NPI course had been carried out. The aims of this research were to know: (1) which mathematics contents related to NPI and (2) the correlation between students' mastery on basic mathematics and their mastery on NPI. This study was conducted in a quasi-experimental design. There were two groups consisted of 28 students in each group. The first group had been taught by direct instruction, and the second by blended learning. There were administered a pre-test and a post-test of basic mathematics and NPI for both groups. The results showed that there was a strong correlation between students' mastery on basic mathematics and their mastery on Nuclear Physics Introduction
- …
