1,866 research outputs found
Vortex nucleation and evolution in parametric wave mixing
We predict a variety of new phenomena, that includes the spontaneous nucleation of multiple vortex twins, vortex rotation and drift, vortex-antivortex interaction and annihilation, and formation of quasi-aligned patterns of single-charge vortices. We consider cw light propagation in a bulk quadratic nonlinear crystal under conditions for type I second-harmonic generation. We restrict ourselves to up-conversion geometries with material and light conditions that yield negligible depletion of the pump fundamental frequency (FF) beam. Then, the second-harmonic (SH) beam is dictated by an inhomogeneous linear partial differential equation whose general solution can be obtained by means of the Green function approach. In the case of un-seeded geometries (i.e., no SH input light), and in absence of Poynting vector walk-off between the FF and SH beams, sum- and difference-charge arithmetic operations have been predicted and observed experimentally. However, a new range of phenomena is discovered in seeded geometries and with Poynting vector walk-off. In particular, in the case of seeded schemes without walk-off, our numerical and experimental investigations show the spontaneous nucleation of multiple-vortex twins. In such case, the number of vortices present in the SH beam and its total topological charge varies with the propagation distance inside the crystal.Peer ReviewedPostprint (published version
Similarity rules for nonlinear Kerr-like slab optical waveguides
It is shown that the stationary waveguiding properties of TE guided waves in a slab optical waveguide with a nonlinear Kerr-like bounding medium can be described in a compact way by means of the usual normalized effective modal index (b) and a set of only four independent normalized parameters: the well-known normalized thickness (V) and asymmetry measure (a) of the waveguide, the generalized aspect ratio between film and substrate refractive indexes, and a guided power measure. From an analysis starting on Buckingham's II-theorem, the similarity rules existing between the above waveguiding structures have been investigated. Allowed and forbidden regions in (b,V,a)-space in order that a guided solution exists have been recognized and classified, with the marginal loci separating different regions being a function of only V and a.Peer ReviewedPostprint (published version
Robust ultrashort light bullets in strongly twisted waveguide arrays
We introduce a new class of stable light bullets that form in twisted waveguide arrays pumped with ultrashort pulses, where twisting offers a powerful knob to tune the properties of localized states. We find that, above a critical twist, three-dimensional wave packets are unambiguously stabilized, with no minimum energy threshold. As a consequence, when the higher-order perturbations that accompany ultrashort pulse propagation are at play, the bullets dynamically adjust and sweep along stable branches. Therefore, they are predicted to feature an unprecedented experimental robustness.Peer ReviewedPostprint (published version
New type of guided waves in birefringent media
The existence of waves guided by thin dielectric films deposited over a positive birefringent crystal for waveguide parameters below usual cutoff is discussed. This additional kind of guided wave has a hybrid nature and occurs in properly tailored waveguides when a suitable orientation of the crystal optical axis, relative to the waveguide axis, is taken. The dependence of the allowed orientations on various waveguide parameters has been analyzed. Noticeable fast variations, with potential interest for switching applications, have been found.Peer ReviewedPostprint (published version
Transition from Dirac points to exceptional points in anisotropic waveguides
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigenvalue problem for bound states splits into two blocks, sorting the eigenmodes either by polarization or by inner mode symmetry. Introducing a non-Hermitian channel via a suitable leakage mechanism causes the Dirac points to transform into exceptional points connected by a Fermi arc. The exceptional points arise as improper hybrid leaky states and, importantly, are found to occur always out of the anisotropy symmetry planes.Peer ReviewedPostprint (published version
Vortex evolution in parametric wave mixing
We investigate the evolution of vortex wave front dislocations in multiple-wave second-harmonic generation processes in quadratic nonlinear media. Vortices nested in finite-size host beams are shown to nucleate and to annihilate in pairs, and to move across the transverse wave front during the beam evolution. A closed-form model that holds under conditions of negligible-depletion of the pump beam is developed to describe the vortex dynamics in order to predict the number of vortices present in the wave fronts of the beams at any instance of the propagation. Results are compared with numerical simulations of the full governing equations and with experimental observations. Limitations of the model are outlined.Peer ReviewedPostprint (published version
Universal diagrams for te waves guided by thin films bounded by saturable nonlinear media
It is shown that universal V-b diagrams provide a powerful tool when analyzing the stationary waveguiding properties of the TE waves guided by a thin film bounded by a saturable nonlinear substrate or cladding. For a wide class of nonlinearities, the allowed and forbidden regions of these diagrams, for a stationary guided propagation to occur, display a universal pattern, the marginal loci separating different allowed regions from the forbidden ones being simple functions of only the asymmetry measure of the waveguide and the saturation value of the nonlinear permittivity. Relevant information for device design purposes is summarized on a few diagrams, so general waveguiding properties can be immediately read-off from them, and threshold power-independent values of the normalized thickness of the waveguide for a particular kind of guided wave to be allowed are obtained. Qualitative information concerning both the guided power and the stability of guided waves is also included in the diagrams.Peer ReviewedPostprint (published version
Three-dimensional topological solitons in PT-symmetric optical lattices
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.Peer ReviewedPostprint (published version
- …
