139 research outputs found

    Influence of the live cell DNA marker DRAQ5 on chromatin-associated processes

    Get PDF
    In the last decade, live cell fluorescence microscopy experiments have revolutionized cellular and molecular biology, enabling the localization of proteins within cellular compartments to be analysed and to determine kinetic parameters of enzymatic reactions in living nuclei to be measured. Recently, in vivo DNA labelling by DNA-stains such as DRAQ5, has provided the opportunity to measure kinetic reactions of GFP-fused proteins in targeted areas of the nucleus with different chromatin compaction levels. To verify the suitability of combining DRAQ5-staining with protein dynamic measurements, we have tested the cellular consequences of DRAQ5 DNA intercalation. We show that DRAQ5 intercalation rapidly modifies both the localization and the mobility properties of several DNA-binding proteins such as histones, DNA repair, replication and transcription factors, by stimulating a release of these proteins from their substrate. Most importantly, the effect of DRAQ5 on the mobility of essential cellular enzymes results in a potent inhibition of the corresponding cellular functions. From these observations, we suggest that great caution must be used when interpreting live cell data obtained using DRAQ5

    Unconventional Ubiquitin Recognition by the Ubiquitin-Binding Motif within the Y-Family DNA Polymerases ι and Rev1

    Get PDF
    Translesion synthesis is an essential cell survival strategy to promote replication after DNA damage. The accumulation of Y family polymerases (pol) ι and Rev1 at the stalled replication machinery is mediated by the ubiquitin-binding motifs (UBMs) of the polymerases and enhanced by PCNA monoubiquitination. We report the solution structures of the C-terminal UBM of human pol ι and its complex with ubiquitin. Distinct from other ubiquitin-binding domains, the UBM binds to the hydrophobic surface of ubiquitin centered at L8. Accordingly, mutation of L8A, but not I44A, of ubiquitin abolishes UBM binding. Human pol ι contains two functional UBMs, both contributing to replication foci formation. In contrast, only the second UBM of Saccharomyces cerevisiae Rev1 binds to ubiquitin and is essential for Rev1-dependent cell survival and mutagenesis. Point mutations disrupting the UBM-ubiquitin interaction also impair the accumulation of pol ι in replication foci and Rev1-mediated DNA damage tolerance in vivo.National Institute of General Medical Sciences (U.S.) (Grant GM-079376)American Cancer Society. Research ProfessorshipNational Institute of Environmental Health Sciences (Grant P30 ES-002109

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345

    THE INTERMEDIATE COMPOUNDS BETWEEN HUMAN-HEMOGLOBIN AND CARBON-MONOXIDE AT EQUILIBRIUM AND DURING APPROACH TO EQUILIBRIUM

    Get PDF
    The procedure of Perrella et al. (Perrella, M., Benazzi, L., Cremonesi, L., Vesely, S., Viggiano, G., and Rossi-Bernardi, L. (1983) J. Biol. Chem. 258, 4511-4517) for trapping the intermediate compounds between human hemoglobin and carbon monoxide was validated by quantitatively determining during the approach to equilibrium all the species present in a solution containing large amounts of intermediates. An accurate estimate of the intermediate compounds at 50% carbon monoxide saturation in 0.1 M KCl, pH 7, at 22°C, allowed the calculation, according to Adair's scheme, of the four equilibrium constants. At 50% ligand saturation, the pool of intermediate species was about 12% of the total. A slightly greater concentration of tri-liganded than mono-liganded species was found. Carbon monoxide to β chains in slightly greater excess with respect to α chains in both the mono- and tri-liganded species. The symmetrical bi-liganded intermediates, α2β2(CO) and α2(CO)β2, were absent. The nature of the bi-liganded intermediate found to be present in detectable amounts by our technique has yet to be clarified: it could be either the asymmetrical species (αβ)(α(CO)β(CO)) and (αβ(CO)β)) or both of them. Such a finding on the functional heterogeneity among the four possible bi-liganded intermediates is consistent with hypotheses of the existence of more than two quaternary structures in the course of ligand binding to hemoglobin

    ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage

    Get PDF
    DNA polymerase η (polη) belongs to the Y-family of DNA polymerases and facilitates translesion synthesis past UV damage. We show that, after UV irradiation, polη becomes phosphorylated at Ser601 by the ataxia-telangiectasia mutated and Rad3-related (ATR) kinase. DNA damage–induced phosphorylation of polη depends on its physical interaction with Rad18 but is independent of PCNA monoubiquitination. It requires the ubiquitin-binding domain of polη but not its PCNA-interacting motif. ATR-dependent phosphorylation of polη is necessary to restore normal survival and postreplication repair after ultraviolet irradiation in xeroderma pigmentosum variant fibroblasts, and is involved in the checkpoint response to UV damage. Taken together, our results provide evidence for a link between DNA damage–induced checkpoint activation and translesion synthesis in mammalian cells.</jats:p

    RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress

    Get PDF
    The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability

    Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate

    Get PDF
    Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1), and cyclophilin B (CyPB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in collagen type I. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated to the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, normalizing the p-PERK/PERK ratio and the expression of apoptotic marker. The drug has also a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated to its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in presence of autophagy pharmacological inhibition.Our results provide a novel insight into the mechanism of 4-PBA action and demonstrated that the intracellular stress in recessive OI can be tuned by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen

    Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer

    Get PDF
    Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer.Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer.Significance: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742Significance: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742

    Tumour suppressor ING1b maintains genomic stability upon replication stress

    Get PDF
    The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass
    corecore