1,810 research outputs found
Hysteresis effects in Bose-Einstein condensates
Here, we consider damped two-components Bose-Einstein condensates with
many-body interactions. We show that, when the external trapping potential has
a double-well shape and when the nonlinear coupling factors are modulated in
time, hysteresis effects may appear under some circumstances. Such hysteresis
phenomena are a result of the joint contribution between the appearance of
saddle node bifurcations and damping effect.Comment: 10 pages, 2 figure
Existence of the Stark-Wannier quantum resonances
In this paper we prove the existence of the Stark-Wannier quantum resonances
for one-dimensional Schrodinger operators with smooth periodic potential and
small external homogeneous electric field. Such a result extends the existence
result previously obtained in the case of periodic potentials with a finite
number of open gaps.Comment: 30 pages, 1 figur
Ergodicity breaking in strong and network-forming glassy system
The temperature dependence of the non-ergodicity factor of vitreous GeO,
, as deduced from elastic and quasi-elastic neutron scattering
experiments, is analyzed. The data are collected in a wide range of
temperatures from the glassy phase, up to the glass transition temperature, and
well above into the undercooled liquid state. Notwithstanding the investigated
system is classified as prototype of strong glass, it is found that the
temperature- and the -behavior of follow some of the predictions
of Mode Coupling Theory. The experimental data support the hypothesis of the
existence of an ergodic to non-ergodic transition occurring also in network
forming glassy systems
Direct experimental evidence of free fermion antibunching
Fermion antibunching was observed on a beam of free noninteracting neutrons.
A monochromatic beam of thermal neutrons was first split by a graphite single
crystal, then fed to two detectors, displaying a reduced coincidence rate. The
result is a fermionic complement to the Hanbury Brown and Twiss effect for
photons.Comment: 4 pages, 2 figure
Why Social Enterprises Are Asking to Be Multi-stakeholder and Deliberative: An Explanation around the Costs of Exclusion.
The study of multi-stakeholdership (and multi-stakeholder social enterprises in particular) is only at the start. Entrepreneurial choices which have emerged spontaneously, as well as the first legal frameworks approved in this direction, lack an adequate theoretical support. The debate itself is underdeveloped, as the existing understanding of organisations and their aims resist an inclusive, public interest view of enterprise. Our contribution aims at enriching the thin theoretical reflections on multi-stakeholdership, in a context where they are already established, i.e. that of social and personal services.
The aim is to provide an economic justification on why the governance structure and decision-making praxis of the firm needs to account for multiple stakeholders. In particular with our analysis we want: a) to consider production and the role of firms in the context of the “public interest” which may or may not coincide with the non-profit objective; b) to ground the explanation of firm governance and processes upon the nature of production and the interconnections between demand and supply side; c) to explain that the costs associated with multi-stakeholder governance and deliberation in decision-making can increase internal efficiency and be “productive” since they lower internal costs and utilise resources that otherwise would go astray.
The key insight of this work is that, differently from major interpretations, property costs should be compared with a more comprehensive range of costs, such as the social costs that emerge when the supply of social and personal services is insufficient or when the identification of aims and means is not shared amongst stakeholders. Our model highlights that when social costs derived from exclusion are high, even an enterprise with costly decisional processes, such as the multistakeholder, can be the most efficient solution amongst other possible alternatives
High pressure Raman study of La1-xCaxMnO3-δ manganites
We report a high-pressure Raman study on two members of the La1-xCaxMnO3-δ manganite family (x = 0.20, δ = 0 and δ = 0.08). The results obtained for the δ = 0 sample show a different behavior in the low and high pressure regime which is ascribed to the onset of a new pressure-activated interaction previously invoked in other manganite compounds. The comparison of our results with literature data gives further support to the identification of the Jahn-Teller sensitive stretching mode and shows that pressure-induced octahedral symmetrization is more effective in systems exhibiting a lower metallic character. On the contrary the new interaction sets in at a pressure which decreases on increasing the metallic character of the system indicating an important role of the Mn-Mn hopping integral in its activatio
Tuning topological disorder in MgB
We carried out Raman measurements on neutron-irradiated and Al-doped MgB
samples. The irradiation-induced topological disorder causes an unexpected
appearance of high frequency spectral structures, similar to those observed in
lightly Al-doped samples. Our results show that disorder-induced violations of
the selection rules are responsible for the modification of the Raman spectrum
in both irradiated and Al-doped samples. Theoretical calculations of the phonon
density of states support this hypothesis, and demonstrate that the high
frequency structures arise mostly from contributions at of the
E phonon mode.Comment: 4 pages, 4 figure
Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides
We investigate the pressure dependence of the optical properties of CeTe,
which exhibits an incommensurate charge-density-wave (CDW) state already at 300
K. Our data are collected in the mid-infrared spectral range at room
temperature and at pressures between 0 and 9 GPa. The energy for the single
particle excitation across the CDW gap decreases upon increasing the applied
pressure, similarly to the chemical pressure by rare-earth substitution. The
broadening of the bands upon lattice compression removes the perfect nesting
condition of the Fermi surface and therefore diminishes the impact of the CDW
transition on the electronic properties of Te.Comment: 5 pages, 4 figure
High-Pressure Phase Diagram in the Manganites: a Two-site Model Study
The pressure dependence of the Curie temperature in manganites,
recently studied over a wide pressure range, is not quantitatively accounted
for by the quenching of Jahn-Teller distortions, and suggests the occurrence of
a new pressure-activated localizing processes. We present a theoretical
calculation of based on a two-site double-exchange model with
electron-phonon coupling interaction and direct superexchange between the core spins. We calculate the pressure dependence of and compare
it with the experimental phase diagram. Our results describe the experimental
behavior quite well if a pressure-activated enhancement of the
antiferromagnetic superexchange interaction is assumed
Pressure dependence of the optical properties of the charge-density-wave compound LaTe
We report the pressure dependence of the optical response of LaTe, which
is deep in the charge-density-wave (CDW) ground state even at 300 K. The
reflectivity spectrum is collected in the mid-infrared spectral range at room
temperature and at pressures between 0 and 7 GPa. We extract the energy scale
due to the single particle excitation across the CDW gap and the Drude weight.
We establish that the gap decreases upon compressing the lattice, while the
Drude weight increases. This signals a reduction in the quality of nesting upon
applying pressure, therefore inducing a lesser impact of the CDW condensate on
the electronic properties of LaTe. The consequent suppression of the CDW
gap leads to a release of additional charge carriers, manifested by the shift
of weight from the gap feature into the metallic component of the optical
response. On the contrary, the power-law behavior, seen in the optical
conductivity at energies above the gap excitation and indicating a weakly
interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be
only moderately dependent on pressure
- …
