959 research outputs found

    Scaling Navier-Stokes Equation in Nanotubes

    Full text link
    On one hand, classical Monte Carlo and molecular dynamics (MD) simulations have been very useful in the study of liquids in nanotubes, enabling a wide variety of properties to be calculated in intuitive agreement with experiments. On the other hand, recent studies indicate that the theory of continuum breaks down only at the nanometer level; consequently flows through nanotubes still can be investigated with Navier-Stokes equations if we take suitable boundary conditions into account. The aim of this paper is to study the statics and dynamics of liquids in nanotubes by using methods of non-linear continuum mechanics. We assume that the nanotube is filled with only a liquid phase; by using a second gradient theory the static profile of the liquid density in the tube is analytically obtained and compared with the profile issued from molecular dynamics simulation. Inside the tube there are two domains: a thin layer near the solid wall where the liquid density is non-uniform and a central core where the liquid density is uniform. In the dynamic case a closed form analytic solution seems to be no more possible, but by a scaling argument it is shown that, in the tube, two distinct domains connected at their frontiers still exist. The thin inhomogeneous layer near the solid wall can be interpreted in relation with the Navier length when the liquid slips on the boundary as it is expected by experiments and molecular dynamics calculations.Comment: 27 page

    Ordinary differential equations described by their Lie symmetry algebra

    Get PDF
    The theory of Lie remarkable equations, i.e. differential equations characterized by their Lie point symmetries, is reviewed and applied to ordinary differential equations. In particular, we consider some relevant Lie algebras of vector fields on Rk\mathbb{R}^k and characterize Lie remarkable equations admitted by the considered Lie algebras.Comment: 17 page

    Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane

    Get PDF
    In this paper we consider a fluid whose viscosity depends on both the mean normal stress and the shear rate flowing down an inclined plane. Such flows have relevance to geophysical flows. In order to make the problem amenable to analysis, we consider a generalization of the lubrication approximation for the flows of such fluids based on the development of the generalization of the Reynolds equation for such flows. This allows us to obtain analytical solutions to the problem of propagation of waves in a fluid flowing down an inclined plane. We find that the dependence of the viscosity on the pressure can increase the breaking time by an order of magnitude or more than that for the classical Newtonian fluid. In the viscous regime, we find both upslope and downslope travelling wave solutions, and these solutions are quantitatively and qualitatively different from the classical Newtonian solutions
    corecore