348 research outputs found
Expression levels of blood microRNAs as biomarker of cognitive decline due to Alzheimer's disease
Studies investigating differential miRNAs expression levels in patients with Alzheimer’s disease (AD) abounded in the last decades and catalysed the interest towards miRNAs as novel non-invasive biomarkers of AD. Chapter 1 provides an overview of AD’s pathogenesis, discusses the evolution of the disease’s definition, and introduces miRNAs. In Chapter 2, a systematic review and a P-value based meta-analysis of 107 studies investigate miRNA expression levels in AD patients. This leads to a prioritisation of 25, 32 and 5 dysregulated miRNAs at study-wide significance in the brain, the blood and the cerebrospinal fluid (CSF) of AD patients, respectively. A pathway enrichment analysis for the top dysregulated miRNAs in the brain confirms their role in regulating biological functions implicated in AD. In Chapter 3, expression levels of the 32 dysregulated miRNAs in the blood and 6 top dysregulated miRNAs in the brain of AD patients, are assessed using real-time quantitative polymerase chain reaction in the blood of cognitively healthy individuals from the CHARIOT-PRO cohort. Low performers on the total Repeatable Battery for the Assessment of Neuropsychological Status scale show downregulation of six miRNAs (hsa-miR-128-3p, hsa-miR-144-5p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-29c-3p and hsa-miR-363-3p). Pathway enrichment analysis highlights involvement in pathways initiating early pathogenetic changes in AD. Finally, in chapter 4, whole-genome sequencing data from the Alzheimer’s Disease Neuroimaging Initiative is used to perform an association analysis between polymorphisms within the six miRNAs’ genes and CSF biomarkers of neurodegeneration. A functional annotation of significant variants highlights expression quantitative trait loci, location in enhancer regions and alterations in the binding sites of transcription factors regulating neuronal function. The association of variants located within the same miRNA gene with different markers of neurodegeneration reveals a positive correlation between members of the amyloid cascade and microglial activation in the CSF. The final chapter highlights the clinical relevance of these findings and discusses future perspectives.Open Acces
Patients with geriatric syndromes and anti-amyloid therapies: lack of consideration? An exploratory analysis of the literature.
INTRODUCTION
Patients who should benefit from anti-amyloid therapies (AAT) are found across all geriatric settings. Yet, it remains unclear how the use of AAT in patients with geriatric syndromes, such as frailty and polypharmacy, has so far been discussed in the literature.
METHODS
Articles on aducanumab, gantenerumab, lecanemab, donanemab, crenezumab, solanezumab were retrieved in MEDLINE from inception to July 2023. For each article, identified geriatric relevant terms were assigned to five discussion contexts (eligibility of AAT study population, safety, prescription, patient clinical profile, alternative outcomes measurement). Article type and the involvement of geriatric healthcare professionals as an author were further extracted.
RESULTS
Out of 538 articles, 23 (4.27%) were published in journals from the geriatric category, 44 (8.18%) included an author affiliated with a geriatric institution. One hundred and sixteen (21.56%) articles included at least one geriatric relevant term, which were mostly discussed in the context of safety and eligibility. Articles mentioning geriatric syndromes were more frequently authored by a geriatric healthcare professional (p = 0.044).
DISCUSSION
The use of AAT in patients with geriatric syndromes has so far received poor attention in the literature raising concerns on their use in this patient group. The involvement of geriatric healthcare professionals in future studies may increase the relevance of AAT research in patients with geriatric syndromes
How to Study Child Sexual Abuse Within the Institutional Framework? The Experience of the Catholic Church in Poland
Sexual abuse as a manifestation of personality disorders and a crime is shaped and committed in a specific social environment. The Institute for Catholic Church Statistics was the first in Poland to undertake systematic research on the problem of child sexual abuse. The scope of this research concerns the acts committed within Catholic organizations by priests and religious. In this chapter, we present Polish research on abuse and characterize the organizational framework of the Catholic Church in Poland. We highlight the public importance of research on child sexual abuse by priests. The focus of the chapter, however, is devoted to the methodological issues of quantitative sociological research on the sexual abuse of minors within Catholic organizations. We discuss the basic assumptions, methods and scope of collected data that concerns Poland. In an accessible and understandable way for a reader who has no knowledge of social sciences, we explain how the facts of child abuse by priests and religious are studied in Poland
Triptych
Our desire is for this publication to be at the intersection of architecture and neuroscience; where the convergence of architecture (the art of building) and neuroscience (the biology of the brain) is aesthetic experience.
The biology of the brain returns architecture to a biological foundation of mood and atmosphere. As architecture students, the more we learn about architecture in terms of a sensory experience, the better we can design. Just as we learn architecture by doing it, flickering between theory and practice, by dancing between thinking and feeling, so can we learn any subject.
This publication is the product of a five month graduate seminar in which we studied introductory literature in the art and science of spatial experience and investigations into specific questions raised within our discussions. The topics of research are extensions of specific students curiosity, which has research merit relative to the collective’s inquiries.
Our deepest gratitude to our advisor, Professor Bob Condia. We were fortunate enough to have a professor who gave us the freedom to explore on our own and guide us. Professor Bob Condia taught us how to question thoughts and express ideas through critical thinking and communicationhttps://newprairiepress.org/ebooks/1013/thumbnail.jp
BOLD long-range temporal correlations reflect changes in language and depression across intensive aphasia therapy
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.Methods: Sixteen patients with chronic poststroke aphasia underwent functional magnetic resonance imaging before and after 2 to 4 weeks of intensive language-action therapy. Therapy took place at Freie Universität Berlin (2014-2020). Language functions and depression were assessed using the Aachen Aphasia Test, the Beck Depression Inventory, and the Montgomery-Åsberg Depression Rating Scale. We implemented a passive reading functional magnetic resonance imaging paradigm and analyzed data using detrended fluctuation analysis to assess LRTC. A 2×2×2 (time, hemisphere, and region of interest) repeated measures ANCOVA (covariates: age, lesion size, time poststroke, and therapy intensity) was conducted in frontoparietal/temporal perisylvian areas across hemispheres before/after therapy. Correlation analyses explored links between changes in behavior and LRTC in focal perisylvian areas and across the whole brain.Results: Younger patients (relative to the continuous age range of our sample) showed reductions in LRTC across therapy, whereas relatively older patients tended toward increases. We found that changes in LRTC correlated with changes in language performance in right hemisphere perisylvian regions and bilateral domain-general and memory areas (eg, hippocampus, thalamus, supplementary motor area, and putamen). Similarly, changes in depressive symptoms correlated with LRTC changes in right hemisphere perisylvian regions.Conclusions: LRTC changes across therapy reflect changes in both language performance and depression in chronic poststroke aphasia. Predominantly right perisylvian and domain-general regions seem critical for neuroplasticity in language rehabilitation. In addition, the observed role of right perisylvian regions in mood regulation highlights the interconnection of cognitive recovery and emotional well-being. LRTC may represent a valuable biomarker for tracking therapy-related neuroplasticity
Approach for Phased Sequence-Based Genotyping of the Critical Pharmacogene Dihydropyrimidine Dehydrogenase (DPYD).
Pre-treatment genotyping of four well-characterized toxicity risk-variants in the dihydropyrimidine dehydrogenase gene (DPYD) has been widely implemented in Europe to prevent serious adverse effects in cancer patients treated with fluoropyrimidines. Current genotyping practices are largely limited to selected commonly studied variants and are unable to determine phasing when more than one variant allele is detected. Recent evidence indicates that common DPYD variants modulate the functional impact of deleterious variants in a phase-dependent manner, where a cis- or a trans-configuration translates into different toxicity risks and dosing recommendations. DPYD is a large gene with 23 exons spanning nearly a mega-base of DNA, making it a challenging candidate for full-gene sequencing in the diagnostic setting. Herein, we present a time- and cost-efficient long-read sequencing approach for capturing the complete coding region of DPYD. We demonstrate that this method can reliably produce phased genotypes, overcoming a major limitation with current methods. This method was validated using 21 subjects, including two cancer patients, each of whom carried multiple DPYD variants. Genotype assignments showed complete concordance with conventional approaches. Furthermore, we demonstrate that the method is robust to technical challenges inherent in long-range sequencing of PCR products, including reference alignment bias and PCR chimerism
Association of Blood MicroRNA Expression and Polymorphisms with Cognitive and Biomarker Changes in Older Adults
BackgroundIdentifying individuals before the onset of overt symptoms is key in the prevention of Alzheimer's disease (AD).ObjkectivesInvestigate the use of miRNA as early blood-biomarker of cognitive decline in older adults.DesignCross-sectional.SettingTwo observational cohorts (CHARIOT-PRO, Alzheimer's Disease Neuroimaging Initiative (ADNI)).Participants830 individuals without overt clinical symptoms from CHARIOT-PRO and 812 individuals from ADNI.MeasurementsqPCR analysis of a prioritised set of 38 miRNAs in the blood of individuals from CHARIOT-PRO, followed by a brain-specific functional enrichment analysis for the significant miRNAs. In ADNI, genetic association analysis for polymorphisms within the significant miRNAs' genes and CSF levels of phosphorylated-tau, total-tau, amyloid-& beta;42, soluble-TREM2 and BACE1 activity using whole genome sequencing data. Post-hoc analysis using multi-omics datasets.ResultsSix miRNAs (hsa-miR-128-3p, hsa-miR-144-5p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-29c-3p and hsa-miR-363-3p) were downregulated in the blood of individuals with low cognitive performance on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The pathway enrichment analysis indicated involvement of apoptosis and inflammation, relevant in early AD stages. Polymorphisms within genes encoding for hsa-miR-29c-3p and hsa-miR-146a-5p were associated with CSF levels of amyloid-& beta;42, soluble-TREM2 and BACE1 activity, and 21 variants were eQTL for hippocampal MIR29C expression.Conclusionssix miRNAs may serve as potential blood biomarker of subclinical cognitive deficits in AD. Polymorphisms within these miRNAs suggest a possible interplay between the amyloid cascade and microglial activation at preclinical stages of AD
Increased brain age in adults with Prader-Willi syndrome
Prader-Willi syndrome (PWS) is the most common genetic obesity syndrome, with associated learning difficulties, neuroendocrine deficits, and behavioural and psychiatric problems. As the life expectancy of individuals with PWS increases, there is concern that alterations in brain structure associated with the syndrome, as a direct result of absent expression of PWS genes, and its metabolic complications and hormonal deficits, might cause early onset of physiological and brain aging. In this study, a machine learning approach was used to predict brain age based on grey matter (GM) and white matter (WM) maps derived from structural neuroimaging data using T1-weighted magnetic resonance imaging (MRI) scans. Brain-predicted age difference (brain-PAD) scores, calculated as the difference between chronological age and brain-predicted age, are designed to reflect deviations from healthy brain aging, with higher brain-PAD scores indicating premature aging. Two separate adult cohorts underwent brain-predicted age calculation. The main cohort consisted of adults with PWS (n = 20; age mean 23.1 years, range 19.8-27.7; 70.0% male; body mass index (BMI) mean 30.1 kg/m2, 21.5-47.7; n = 19 paternal chromosome 15q11-13 deletion) and age- and sex-matched controls (n = 40; age 22.9 years, 19.6-29.0; 65.0% male; BMI 24.1 kg/m2, 19.2-34.2) adults (BMI PWS vs. control P = .002). Brain-PAD was significantly greater in PWS than controls (effect size mean ± SEM +7.24 ± 2.20 years [95% CI 2.83, 11.63], P = .002). Brain-PAD remained significantly greater in PWS than controls when restricting analysis to a sub-cohort matched for BMI consisting of n = 15 with PWS with BMI range 21.5-33.7 kg/m2, and n = 29 controls with BMI 21.7-34.2 kg/m2 (effect size +5.51 ± 2.56 years [95% CI 3.44, 10.38], P = .037). In the PWS group, brain-PAD scores were not associated with intelligence quotient (IQ), use of hormonal and psychotropic medications, nor severity of repetitive or disruptive behaviours. A 24.5 year old man (BMI 36.9 kg/m2) with PWS from a SNORD116 microdeletion also had increased brain PAD of 12.87 years, compared to 0.84 ± 6.52 years in a second control adult cohort (n = 95; age mean 34.0 years, range 19.9-55.5; 38.9% male; BMI 28.7 kg/m2, 19.1-43.1). This increase in brain-PAD in adults with PWS indicates abnormal brain structure that may reflect premature brain aging or abnormal brain development. The similar finding in a rare patient with a SNORD116 microdeletion implicates a potential causative role for this PWS region gene cluster in the structural brain abnormalities associated primarily with the syndrome and/or its complications. Further longitudinal neuroimaging studies are needed to clarify the natural history of this increase in brain age in PWS, its relationship with obesity, and whether similar findings are seen in those with PWS from maternal uniparental disomy.</p
Increased brain age in adults with Prader-Willi syndrome.
Prader-Willi syndrome (PWS) is the most common genetic obesity syndrome, with associated learning difficulties, neuroendocrine deficits, and behavioural and psychiatric problems. As the life expectancy of individuals with PWS increases, there is concern that alterations in brain structure associated with the syndrome, as a direct result of absent expression of PWS genes, and its metabolic complications and hormonal deficits, might cause early onset of physiological and brain aging. In this study, a machine learning approach was used to predict brain age based on grey matter (GM) and white matter (WM) maps derived from structural neuroimaging data using T1-weighted magnetic resonance imaging (MRI) scans. Brain-predicted age difference (brain-PAD) scores, calculated as the difference between chronological age and brain-predicted age, are designed to reflect deviations from healthy brain aging, with higher brain-PAD scores indicating premature aging. Two separate adult cohorts underwent brain-predicted age calculation. The main cohort consisted of adults with PWS (n = 20; age mean 23.1 years, range 19.8-27.7; 70.0% male; body mass index (BMI) mean 30.1 kg/m2, 21.5-47.7; n = 19 paternal chromosome 15q11-13 deletion) and age- and sex-matched controls (n = 40; age 22.9 years, 19.6-29.0; 65.0% male; BMI 24.1 kg/m2, 19.2-34.2) adults (BMI PWS vs. control P = .002). Brain-PAD was significantly greater in PWS than controls (effect size mean ± SEM +7.24 ± 2.20 years [95% CI 2.83, 11.63], P = .002). Brain-PAD remained significantly greater in PWS than controls when restricting analysis to a sub-cohort matched for BMI consisting of n = 15 with PWS with BMI range 21.5-33.7 kg/m2, and n = 29 controls with BMI 21.7-34.2 kg/m2 (effect size +5.51 ± 2.56 years [95% CI 3.44, 10.38], P = .037). In the PWS group, brain-PAD scores were not associated with intelligence quotient (IQ), use of hormonal and psychotropic medications, nor severity of repetitive or disruptive behaviours. A 24.5 year old man (BMI 36.9 kg/m2) with PWS from a SNORD116 microdeletion also had increased brain PAD of 12.87 years, compared to 0.84 ± 6.52 years in a second control adult cohort (n = 95; age mean 34.0 years, range 19.9-55.5; 38.9% male; BMI 28.7 kg/m2, 19.1-43.1). This increase in brain-PAD in adults with PWS indicates abnormal brain structure that may reflect premature brain aging or abnormal brain development. The similar finding in a rare patient with a SNORD116 microdeletion implicates a potential causative role for this PWS region gene cluster in the structural brain abnormalities associated primarily with the syndrome and/or its complications. Further longitudinal neuroimaging studies are needed to clarify the natural history of this increase in brain age in PWS, its relationship with obesity, and whether similar findings are seen in those with PWS from maternal uniparental disomy
- …
