185 research outputs found

    Primary catastrophic antiphospholipid syndrome in an 8 year-old girl

    Get PDF
    Antiphospholipid syndrome (APS) is a disease characterized by recurrent arterial and venous thromboses. Rapidly progressive multiple thromboses leading to multiorgan failure occur in less than 1% of patients and named as catastrophic antiphospholipid syndrome (CAPS). We, hereby, describe an 8 year-old-girl with erythematous skin lesions progressing into purpura fulminans. The patient developed CAPS with the findings including proteinuria, microangiopathic hemolytic anemia, thrombocytopenia, arterial and venous thromboses demonstrated on skin biopsies. She was admitted to intensive care unit and received empirical antibiotics, anticoagulants, antiaggregants, steroids and intravenous immunoglobulins. The diagnosis of APS was confirmed by positive lupus anticoagulants, elevated anti beta-2 glycoprotein IgG and antiphospholipid IgG titers. Moreover, other than MTHFRA1298C, MTHFR-C677T, factor V H1299R, beta fibrinogen-455 G>A heterozygosity indicating low risk for thrombophilia, no infectious, rheumatological or malignant etiologies were identified. Family history revealed Raynaud’s phenomenon in a sister, interstitial lung disease, proteinuria and hematuria in paternal grandmother in addition to lupus anticoagulant positivity in father and 2 elder sisters. Her treatment included debridement of necrotic skin tissue, grefting and local mesenchymal stem cell application to upper thigh and lower leg region following oral azathioprine administration

    DOCK8 Functions as an Adaptor that Links TLR–MyD88 Signaling to B Cell Activation

    Get PDF
    DOCK8 and MyD88 have been implicated in serologic memory. Here we report antibody responses were impaired and CD27+CD27^+ memory B cells were severely reduced in DOCK8-deficient patients. Toll-like receptor 9 (TLR9)- but not CD40-driven B cell proliferation and immunoglobulin production were severely reduced in DOCK8-deficient B cells. In contrast, TLR9-driven expression of AICDA, CD23 and CD86, and activation of NF-κB, p38 and Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. Following TLR9 ligation, DOCK8 became tyrosine phosphorylated by Pyk2, bound the Src family kinase Lyn and linked TLR9 to a Src-Syk-STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells

    Long-term follow-up of IPEX syndrome patients after different therapeutic strategies : an international multicenter retrospective study

    Get PDF
    Background: Immunodysregulation polyendocrinopathy enteropathy x-linked(IPEX) syndrome is a monogenic autoimmune disease caused by FOXP3 mutations. Because it is a rare disease, the natural history and response to treatments, including allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppression (IS), have not been thoroughly examined. Objective: This analysis sought to evaluate disease onset, progression, and long-term outcome of the 2 main treatments in long-term IPEX survivors. Methods: Clinical histories of 96 patients with a genetically proven IPEX syndrome were collected from 38 institutions worldwide and retrospectively analyzed. To investigate possible factors suitable to predict the outcome, an organ involvement (OI) scoring system was developed. Results: We confirm neonatal onset with enteropathy, type 1 diabetes, and eczema. In addition, we found less common manifestations in delayed onset patients or during disease evolution. There is no correlation between the site of mutation and the disease course or outcome, and the same genotype can present with variable phenotypes. HSCT patients (n = 58) had a median follow-up of 2.7 years (range, 1 week-15 years). Patients receiving chronic IS (n 5 34) had a median follow-up of 4 years (range, 2 months-25 years). The overall survival after HSCT was 73.2% (95% CI, 59.4-83.0) and after IS was 65.1% (95% CI, 62.8-95.8). The pretreatment OI score was the only significant predictor of overall survival after transplant (P = .035) but not under IS. Conclusions: Patients receiving chronic IS were hampered by disease recurrence or complications, impacting long-term.disease-free survival. When performed in patients with a low OI score, HSCT resulted in disease resolution with better quality of life, independent of age, donor source, or conditioning regimen

    Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry

    Get PDF
    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies

    Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome

    Get PDF
    Purpose: Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort. Methods: We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes by flow cytometry. Results: There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4+ T-cell counts, percentages of recent thymic emigrant T cells, and naive CD4+ T decreased in two, five, and four patients, respectively. Impaired T-cell proliferation and reduced CD25 upregulation were detected in all patients. These changes were more prominent in CD8+ T cells. GIS involvements negatively correlated with CD3+ T-, CD3+CD4+ T-, CD16+CD56+ NK-cell counts, and CD4+/CD8+ T-cell ratios. Further, we observed expanded cTFH cells and reduced Treg and follicular regulatory T cells with a skewing to a TH2-like phenotype in all tested subpopulations. Conclusion: The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cTFH and decreased Treg cells may provide further insight into the immune aberrations observed in ICF syndrome

    Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress

    Get PDF
    Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.</p

    TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome.

    Get PDF
    THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology
    corecore