181 research outputs found
Mechanical Relaxation in Glasses and at the Glass Transition
The Gilroy-Phillips model of relaxational jumps in asymmetric double-well
potentials, developed for the Arrhenius-type secondary relaxations of the glass
phase, is extended to a formal description of the breakdown of the shear
modulus at the glass transition, the flow process.Comment: 13 pages, 11 figures, 49 ref
Interaction effects and phase relaxation in disordered systems
This paper is intended to demonstrate that there is no need to revise the
existing theory of the transport properties of disordered conductors in the
so-called weak localization regime. In particular, we demonstrate explicitly
that recent attempts to justify theoretically that the dephasing rate
(extracted from the magnetoresistance) remains finite at zero temperature are
based on the profoundly incorrect calculation. This demonstration is based on a
straightforward evaluation of the effect of the electron-electron interaction
on the weak localization correction to the conductivity of disordered metals.
Using well-controlled perturbation theory with the inverse conductance as
the small parameter, we show that this effect consists of two contributions.
First contribution comes from the processes with energy transfer smaller than
the temperature. This contribution is responsible for setting the energy scale
for the magnetoresistance. The second contribution originates from the virtual
processes with energy transfer larger than the temperature. It is shown that
the latter processes have nothing to do with the dephasing, but rather manifest
the second order (in ) correction to the conductance. This correction is
calculated for the first time. The paper also contains a brief review of the
existing experiments on the dephasing of electrons in disordered conductors and
an extended qualitative discussion of the quantum corrections to the
conductivity and to the density of electronic states in the weak localization
regime.Comment: 34 pages, 13 .eps figure
A Novel Small Molecule Targeting Oncogenic miR-10b in Gastric Cancer
https://openworks.mdanderson.org/sumexp21/1206/thumbnail.jp
Mechanism and Kinetic Parameters of the Thermal Decomposition of Gibbsite Al(OH) 3 by Thermogravimetric Analysis
In this study, the mechanism and the kinetic parameters of the thermal decomposition of gibbsite Al(OH)3 were studied by differential thermogravimetry technique under non-isothermal conditions, between room temperature and 1200 K at heating rates of 5, 10, 15 and 20 The obtained differential thermogravimetry curves show clearly three distinct peaks. The first peak is due to the partial dehydroxylation of gibbsite. Among the 32 types of differential equations of non-isothermal kinetics, we have found that the most suitable mechanism is (A 3/2 : 2/3 ) also called Avrami-Erofeev equation of order 2/3. The values of the activation energy EA and of the pre-exponential factor K are 157 kJ mol −1 and 7.58 × 10 15 s −1 , respectively. The second peak corresponds to the decomposition of gibbsite to boehmite. Decomposition is controlled by the rate of second-order reaction (F2: g(x) = (1 − x) −1 − 1), under the applied conditions. The activation energy EA and pre-exponential factor K correspond to 243 kJ mol −1 and 3.73 × 10 22 s −1 , respectively. The third peak is due to transformation of boehmite to alumina. However the mechanism for such transformation is better described by the 3/2 rate order reaction (F 3/2 : g(x) = (1 − x) −1/2 − 1). In addition, the values of EA and K were determined to be around 296 kJ mol −1 and 1.82 × 10 19 s −1 , respectively. The results of differential thermogravimetry were supplemented by the differential thermal analysis. X-ray powder diffraction analysis was carried out for samples of gibbsite treated at different temperatures between 200 and 1200 • C in 200 • C steps
Effect of Mg contents on the mechanical proprieties and precipitation kinetics in Al–3.3 wt.% Cu alloy
The effect of additional Mg on the microstructure, mechanical properties, and transformation kinetics during aging in Al–3.3 wt.% Cu alloy was studied. The compositions and microstructure were examined by X-ray diffraction, Differential scanning calorimetry (DSC) and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results show that the Mg in the Al–Cu alloy mainly precipitated to the grain boundaries during the process of transformation and formed a ternary Al2CuMg metallic compound and the rate of discontinuous precipitation reaction decreases with increasing concentration of Mg. The activation energy of crystallization was evaluated by applying the Kissinger equation
EUSO-Offline: A comprehensive simulation and analysis framework
The complexity of modern cosmic ray observatories and the rich data sets they capture often require a sophisticated software framework to support the simulation of physical processes, detector response, as well as reconstruction and analysis of real and simulated data. Here we present the EUSO-Offline framework. The code base was originally developed by the Pierre Auger Collaboration, and portions of it have been adopted by other collaborations to suit their needs. We have extended this software to fulfill the requirements of Ultra-High Energy Cosmic Ray detectors and very high energy neutrino detectors developed for the Joint Exploratory Missions for an Extreme Universe Observatory (JEM-EUSO). These path-finder instruments constitute a program to chart the path to a future space-based mission like POEMMA. For completeness, we describe the overall structure of the framework developed by the Auger collaboration and continue with a description of the JEM-EUSO simulation and reconstruction capabilities. The framework is written predominantly in modern C++ (compliled against C++17) and incorporates third-party libraries chosen based on functionality and our best judgment regarding support and longevity. Modularity is a central notion in the framework design, a requirement for large collaborations in which many individuals contribute to a common code base and often want to compare different approaches to a given problem. For the same reason, the framework is designed to be highly configurable, which allows us to contend with a variety of JEM-EUSO missions and observation scenarios. We also discuss how we incorporate broad, industry-standard testing coverage which is necessary to ensure quality and maintainability of a relatively large code base, and the tools we employ to support a multitude of computing platforms and enable fast, reliable installation of external packages. Finally, we provide a few examples of simulation and reconstruction applications using EUSO-Offline
EUSO-SPB1 mission and science
The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
Science and mission status of EUSO-SPB2
The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observa- tional goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth’s limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals
Estimation of the exposure of the TUS space-based cosmic ray observatory
The TUS observatory was the first orbital detector aimed at the detection of ultra-high energy cosmic rays (UHECRs).
It was launched on April 28, 2016, from the Vostochny cosmodrome in Russia and operated until December 2017. It collected ∼80,000 events with a time resolution of 0.8~μs. A fundamental parameter to be determined for cosmic ray studies is the exposure of an experiment. This parameter is important to estimate the average expected event rate as a function of energy and to calculate the absolute flux in case of event detection. Here we present results of a study aimed to calculate the exposure that TUS accumulated during its mission. The role of clouds, detector dead time, artificial sources, storms, lightning discharges, airglow and moon phases is studied in detail. An exposure estimate with its geographical distribution is presented. We report on the applied technique and on the perspectives of this study in view of the future missions of the JEM-EUSO program
- …
