22 research outputs found

    Machine Learning and Meta-Analysis Approach to Identify Patient Comorbidities and Symptoms that Increased Risk of Mortality in COVID-19

    Get PDF
    Background: Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus is a significant global challenge. Many individuals who become infected have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative about individual risk of severe illness and mortality. Accurately determining how comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. Methods: To assess the interaction of patient comorbidities with COVID-19 severity and mortality we performed a meta-analysis of the published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Results: Our meta-analysis identified chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictor of mortality, in terms of symptom-comorbidity combinations, it was observed that Pneumonia-Hypertension, Pneumonia-Diabetes and Acute Respiratory Distress Syndrome (ARDS)-Hypertension showed the most significant effects on COVID-19 mortality. Conclusions: These results highlight patient cohorts most at risk of COVID-19 related severe morbidity and mortality which have implications for prioritization of hospital resources

    Machine Learning Approaches to Identify Patient Comorbidities and Symptoms That Increased Risk of Mortality in COVID-19

    No full text
    Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus, is a significant global challenge. Many individuals who become infected may have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative regarding the individual risk of severe illness and mortality. Determining the degree to which comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. To assess this we performed a meta-analysis of published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Our meta-analysis suggested that chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy, and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictors of mortality, in terms of symptom–comorbidity combinations, it was observed that Pneumonia–Hypertension, Pneumonia–Diabetes, and Acute Respiratory Distress Syndrome (ARDS)–Hypertension showed the most significant associations with COVID-19 mortality. These results highlight the patient cohorts most likely to be at risk of COVID-19-related severe morbidity and mortality, which have implications for prioritization of hospital resources

    Movie Genre Classification with Deep Neural Network using Poster Images

    No full text

    Exploring transformer models in the sentiment analysis task for the under-resource Bengali language

    No full text
    In the sentiment analysis (SA) task, we can obtain a positive or negative-typed comment or feedback from an online user or a customer about any object, such as a movie, drama, food, and others. This user’s sentiment may positively impact various decision-making processes. In this regard, a lot of studies have been done on identifying sentiments from a text in high-resource languages like English. However, a small number of studies are detected in the under-resource Bengali language because of the unavailability of the benchmark corpus, limitations of text processing application software, and so on. Furthermore, there is still enough space to enhance the classification performance of the SA task. In this research, we experiment on a recognized Bengali dataset of 11,807 comments to find positive or negative sentiments. We employ five state-of-the-art transformer-based pretrained models, such as multilingual Bidirectional Encoder Representations from Transformers (mBERT), BanglaBERT, Bangla-Bert-Base, DistilmBERT, and XLM-RoBERTa-base (XLM-R-base), with tuning of the hyperparameters. After that, we propose a combined model named Transformer-ensemble that presents outstanding detection performance with an accuracy of 95.97% and an F1-score of 95.96% compared to the existing recent methods in the Bengali SA task

    An Integrated Statistical and Clinically Applicable Machine Learning Framework for the Detection of Autism Spectrum Disorder

    No full text
    Autism Spectrum Disorder (ASD) is a neurological impairment condition that severely impairs cognitive, linguistic, object recognition, interpersonal, and communication skills. Its main cause is genetic, and early treatment and identification can reduce the patient’s expensive medical costs and lengthy examinations. We developed a machine learning (ML) architecture that is capable of effectively analysing autistic children’s datasets and accurately classifying and identifying ASD traits. We considered the ASD screening dataset of toddlers in this study. We utilised the SMOTE method to balance the dataset, followed by feature transformation and selection methods. Then, we utilised several classification techniques in conjunction with a hyperparameter optimisation approach. The AdaBoost method yielded the best results among the classifiers. We employed ML and statistical approaches to identify the most crucial characteristics for the rapid recognition of ASD patients. We believe our proposed framework could be useful for early diagnosis and helpful for clinicians

    A Machine Learning Model to Identify Early Stage Symptoms of SARS-Cov-2 Infected Patients

    No full text
    The recent outbreak of the respiratory ailment COVID-19 caused by novel coronavirus SARS-Cov2 is a severe and urgent global concern. In the absence of effective treatments, the main containment strategy is to reduce the contagion by the isolation of infected individuals; however, isolation of unaffected individuals is highly undesirable. To help make rapid decisions on treatment and isolation needs, it would be useful to determine which features presented by suspected infection cases are the best predictors of a positive diagnosis. This can be done by analyzing patient characteristics, case trajectory, comorbidities, symptoms, diagnosis, and outcomes. We developed a model that employed supervised machine learning algorithms to identify the presentation features predicting COVID-19 disease diagnoses with high accuracy. Features examined included details of the individuals concerned, e.g., age, gender, observation of fever, history of travel, and clinical details such as the severity of cough and incidence of lung infection. We implemented and applied several machine learning algorithms to our collected data and found that the XGBoost algorithm performed with the highest accuracy (>85%) to predict and select features that correctly indicate COVID-19 status for all age groups. Statistical analyses revealed that the most frequent and significant predictive symptoms are fever (41.1%), cough (30.3%), lung infection (13.1%) and runny nose (8.43%). While 54.4% of people examined did not develop any symptoms that could be used for diagnosis, our work indicates that for the remainder, our predictive model could significantly improve the prediction of COVID-19 status, including at early stages of infection
    corecore