21 research outputs found

    Behavioral Strategies for the Treatment of Urinary Incontinence in Women

    No full text

    Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: Two case reports

    No full text
    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms

    Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    No full text
    Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI patients treated with transcranial LED. Methods: Treatments were applied bilaterally and to midline sagittal areas using LED cluster heads [2.1″ diameter, 61 diodes (9 × 633 nm, 52 × 870 nm); 12–15 mW per diode; total power: 500 mW; 22.2 mW/cm2; 13.3 J/cm2 at scalp (estimated 0.4 J/cm2 to cortex)]. Results: Seven years after closed-head TBI from a motor vehicle accident, Patient 1 began transcranial LED treatments. Pre-LED, her ability for sustained attention (computer work) lasted 20 min. After eight weekly LED treatments, her sustained attention time increased to 3 h. The patient performs nightly home treatments (5 years); if she stops treating for more than 2 weeks, she regresses. Patient 2 had a history of closed-head trauma (sports/military, and recent fall), and magnetic resonance imaging showed frontoparietal atrophy. Pre-LED, she was on medical disability for 5 months. After 4 months of nightly LED treatments at home, medical disability discontinued; she returned to working full-time as an executive consultant with an international technology consulting firm. Neuropsychological testing after 9 months of transcranial LED indicated significant improvement (+1, +2SD) in executive function (inhibition, inhibition accuracy) and memory, as well as reduction in post-traumatic stress disorder. If she stops treating for more than 1 week, she regresses. At the time of this report, both patients are continuing treatment. Conclusions: Transcranial LED may improve cognition, reduce costs in TBI treatment, and be applied at home. Controlled studies are warranted.National Institutes of Health (U.S.) (NIH grant RO1AI050875)United States. Dept. of Veterans Affairs (Merit Review Funding)United States. Air Force (MFEL program contract FA9550-04-1-0079)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH- 09-1-0514
    corecore