42 research outputs found

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Steps

    Full text link

    A nonlinear finite-element model of the newborn middle ear

    No full text
    A three-dimensional static nonlinear finite-elementmodel of a 22-day-old newborn middle ear is presented. The model includes the tympanic membrane (TM), malleus, incus, and two ligaments. The effects of the middle-ear cavity are taken into account indirectly. The geometry is based on a computed-tomography scan and on the published literature, supplemented by histology. A nonlinear hyperelastic constitutive law is applied to model large deformations. The middle-ear cavity and the Young’s modulus of the TM have significant effects on TM volume displacements. The TM volume displacement and its nonlinearity and asymmetry increase as the middle-ear cavity volume increases. The effects of the Young’s moduli of the ligaments and ossicles are found to be small. The simulated TM volume changes do not reach a plateau when the pressure is varied to either −3kPa or +3kPa, which is consistent with the nonflat tails often found in tympanograms in newborns. The simulated TM volume displacements, by themselves and also together with previous ear-canal model results, are compared with equivalent-volume differences derived from tympanometric measurements in newborns. The results suggest that the canal-wall volume displacement makes a major contribution to the total canal volume change, and may be larger than the TM volume displacement

    Finite-element modelling of the response of the gerbil middle ear to sound

    No full text
    We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young’s modulus, thickness and density of the pars tensa; the Young’s modulus of the stapedial annular ligament; and the Young’s modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and posterior incudal ligament were changed by ±10 % from their values in the baseline parameter set

    Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity

    No full text
    The purpose of the present work is to investigate the spatial vibration pattern of the gerbil tympanic membrane (TM) as a function of frequency. In vivo vibration measurements were done at several locations on the pars flaccida and pars tensa, and along the manubrium, on surgically exposed gerbil TMs with closed middle ear cavities. A laser Doppler vibrometer was used to measure motions in response to audio frequency sine sweeps in the ear canal. Data are presented for two different pars flaccida conditions: naturally flat and retracted into the middle ear cavity. Resonance of the flat pars flaccida causes a minimum and a shallow maximum in the displacement magnitude of the manubrium and pars tensa at low frequencies. Compared with a flat pars flaccida, a retracted pars flaccida has much lower displacement magnitudes at low frequencies and does not affect the responses of the other points. All manubrial and pars tensa points show a broad resonance in the range of 1.6 to 2 kHz. Above this resonance, the displacement magnitudes of manubrial points, including the umbo, roll off with substantial irregularities. The manubrial points show an increasing displacement magnitude from the lateral process toward the umbo. Above 5 kHz, phase differences between points along the manubrium start to become more evident, which may indicate flexing of the tip of the manubrium or a change in the vibration mode of the malleus. At low frequencies, points on the posterior side of the pars tensa tend to show larger displacements than those on the anterior side. The simple low-frequency vibration pattern of the pars tensa becomes more complex at higher frequencies, with the breakup occurring at between 1.8 and 2.8 kHz. These observations will be important for the development and validation of middle ear finite-element models for the gerbil

    Effect of opening middle-ear cavity on vibrations of gerbil tympanic membrane

    No full text
    This paper presents in vivo experimental measurements of vibrations on the pars flaccida, along the manubrium and at several points on the pars tensa in the gerbil with open middle-ear cavity. The effects of progressive opening of the middle-ear cavity are presented, with up to five different extents of opening. In all manubrial, pars-tensa and pars-flaccida responses, opening the cavity causes an increase in the low-frequency magnitude and a shift of the main middle-ear resonance to lower frequencies and introduces an antiresonance. However, opening the cavity has little or no effect on either the mode of vibration of the manubrium or the breakup frequency of the pars tensa. When the opening is gradually widened, the antiresonance frequency moves to higher frequencies. When the opening is made as wide as anatomically possible, the antiresonance moves to almost 10 kHz. The main increase in the low-frequency response magnitude happens upon making the smallest hole in the cavity wall, and further progressive enlarging of the opening has little or no effect on the low-frequency magnitude. The antiresonance interferes with the response shapes. An identification method is suggested for eliminating the effect of the antiresonance in order to estimate the ideal open-cavity response. The method is validated and then applied to manubrial and pars-tensa responses. Estimating the ideal open-cavity responses will simplify comparison of the data with numerical models which do not include the air cavity. The data collected at intermediate stages of opening will be useful in validating models that do include the cavity
    corecore