106 research outputs found

    Quantum Computation and Decision Trees

    Full text link
    Many interesting computational problems can be reformulated in terms of decision trees. A natural classical algorithm is to then run a random walk on the tree, starting at the root, to see if the tree contains a node n levels from the root. We devise a quantum mechanical algorithm that evolves a state, initially localized at the root, through the tree. We prove that if the classical strategy succeeds in reaching level n in time polynomial in n, then so does the quantum algorithm. Moreover, we find examples of trees for which the classical algorithm requires time exponential in n, but for which the quantum algorithm succeeds in polynomial time. The examples we have so far, however, could also be solved in polynomial time by different classical algorithms.Comment: Revised version to appear in Phys Rev A; technical error corrected, methods and conclusions remain the same; 28 pages, 11 figures, REVTeX, amsmath, BoxedEPS

    Quantum Computation by Adiabatic Evolution

    Get PDF
    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages; email to [email protected]
    corecore