28 research outputs found
Brain Parcellation Selection: An Overlooked Decision Point with Meaningful Effects on Individual Differences in Resting-State Functional Connectivity
Over the past decade extensive research has examined the segregation of the human brain into large-scale functional networks. The resulting network maps, i.e. parcellations, are now commonly used for the a priori identification of functional networks. However, the use of these parcellations, particularly in developmental and clinical samples, hinges on four fundamental assumptions: (1) the various parcellations are equally able to recover the networks of interest; (2) adult-derived parcellations well represent the networks in children\u27s brains; (3) network properties, such as within-network connectivity, are reliably measured across parcellations; and (4) parcellation selection does not impact the results with regard to individual differences in given network properties. In the present study we examined these assumptions using eight common parcellation schemes in two independent developmental samples. We found that the parcellations are equally able to capture networks of interest in both children and adults. However, networks bearing the same name across parcellations (e.g., default network) do not produce reliable within-network measures of functional connectivity. Critically, parcellation selection significantly impacted the magnitude of associations of functional connectivity with age, poverty, and cognitive ability, producing meaningful differences in interpretation of individual differences in functional connectivity based on parcellation choice. Our findings suggest that work employing parcellations may benefit from the use of multiple schemes to confirm the robustness and generalizability of results. Furthermore, researchers looking to gain insight into functional networks may benefit from employing more nuanced network identification approaches such as using densely-sampled data to produce individual-derived network parcellations. A transition towards precision neuroscience will provide new avenues in the characterization of functional brain organization across development and within clinical populations
Insider research and reflective practice:getting published: extending an experiment in critical friendship
Strand Transfer and Elongation of HIV-1 Reverse Transcription Is Facilitated by Cell Factors In Vitro
Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s) did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s) enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT) system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s) suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s) may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis
Assessment of the relevance of the antibiotic 2‐amino‐3‐(oxirane‐2,3‐dicarboxamido)‐propanoyl‐valine from P
The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range
