16 research outputs found
A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia
Competing interests: Andrew A. Farke has read the journal's policy and the authors of this manuscript have the following competing interests: Andrew A. Farke is a volunteer section editor and academic editor for PLOS ONE. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.Acknowledgments
It is a pleasure to offer our most heartfelt thanks to Scott K. Madsen, who found OMNH 34557 and prepared it with consummate skill. We are grateful to James Taylor, Jack Owen, the Keebler family, and the Montana Bureau of Land Management for access to outcrops of the Cloverly Formation. We thank Xu Xing (IVPP) and Hai-Lu You (formerly CAGS-IG) for facilitating access to specimens, Mark Loewen, Joseph Frederickson, Darren Naish, and Leonardo Maiorino for productive discussion and comments, and Roger Burkhalter for assistance in photography. Gary Wisser, from the scientific visualization center at Western University of Health Sciences, is gratefully acknowledged for the high resolution scan of the cranium. Reviews by Peter Makovicky, Hai-Lu You, and editor Peter Wilf improved the manuscript.Author Contributions
Conceived and designed the experiments: AAF WDM RLC. Performed the experiments: AAF WDM RLC. Analyzed the data: AAF WDM RLC MJW. Contributed reagents/materials/analysis tools: AAF WDM RLC MJW. Wrote the paper: AAF WDM RLC MJW.The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous.Funding was received from the National Science Foundation (DEB 9401094, 9870173, http://www.nsf.gov); National Geographic Society (5918-97, http://www.nationalgeographic.com/); and American Chemical Society (PRF #38572-AC8, http://www.acs.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Yeshttp://www.plosone.org/static/editorial#pee
Microfossils in micrites from Serra da Bodoquena (MS), Brazil: taxonomy and paleoenvironmental implications
Dynamic simulation of fuel tank aging for LNG‐fueled ship apparatus in an X‐DF Otto cycle engine
Comparison of experimental and numerical sloshing loads in partially filled tanks
Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements
