37 research outputs found

    Microencapsulation via Spray-Drying of Geraniol-Loaded Emulsions Stabilized by Marine Exopolysaccharide for Enhanced Antimicrobial Activity

    Get PDF
    This work was supported by the Ministry of Higher Education and Scientific Research, Tunisia, through the scholarship program under the project” Mobility to Encourage Young Tunisian Researchers” (No. 19PEJC07-02, 2019).The current study investigates the formation of microencapsulated geraniol powder, with the exopolysaccharide EPS-K1B3 produced by Halomonas caseinilytica K1, as wall material, using spray-drying. Evaluation of the antimicrobial activity of the functional emulsions, prepared at either pH 5 or pH 7, was carried out against Gram-positive (Listeria innocua (ATCC 33090)) and Gram-negative (Escherichia coli (DSM682)) bacterial strains. Results showed prolonged antimicrobial efficacy until 30 days of incubation for geraniol microcapsules compared to wet geraniol emulsions, which could confirm the ability of the spray-drying process to protect encapsulated geraniol for a longer period. The highest antimicrobial efficacy of geraniol microcapsules was observed against L. innocua at pH 5. Therefore, the influence of pH on the functional property of geraniol microcapsules could be highlighted beside the targeted bacterial strain.publishersversionpublishe

    Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    No full text
    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1–20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn
    corecore