8,034 research outputs found

    Finiteness theorems for matroid complexes with prescribed topology

    Full text link
    It is known that there are finitely many simplicial complexes (up to isomorphism) with a given number of vertices. Translating to the language of hh-vectors, there are finitely many simplicial complexes of bounded dimension with h1=kh_1=k for any natural number kk. In this paper we study the question at the other end of the hh-vector: Are there only finitely many (d1)(d-1)-dimensional simplicial complexes with hd=kh_d=k for any given kk? The answer is no if we consider general complexes, but when focus on three cases coming from matroids: (i) independence complexes, (ii) broken circuit complexes, and (iii) order complexes of geometric lattices. We prove the answer is yes in cases (i) and (iii) and conjecture it is also true in case (ii).Comment: to appear in European Journal of Combinatoric

    Lexicographic shellability, matroids and pure order ideals

    Full text link
    In 1977 Stanley conjectured that the hh-vector of a matroid independence complex is a pure OO-sequence. In this paper we use lexicographic shellability for matroids to motivate a combinatorial strengthening of Stanley's conjecture. This suggests that a pure OO-sequence can be constructed from combinatorial data arising from the shelling. We then prove that our conjecture holds for matroids of rank at most four, settling the rank four case of Stanley's conjecture. In general, we prove that if our conjecture holds for all rank dd matroids on at most 2d2d elements, then it holds for all matroids

    Cabri's role in the task of proving within the activity of building part of an axiomatic system

    Get PDF
    We want to show how we use the software Cabri, in a Geometry class for preservice mathematics teachers, in the process of building part of an axiomatic system of Euclidean Geometry. We will illustrate the type of tasks that engage students to discover the relationship between the steps of a geometric construction and the steps of a formal justification of the related geometric fact to understand the logical development of a proof; understand dependency relationships between properties; generate ideas that can be useful for a proof; produce conjectures that correspond to theorems of the system; and participate in the deductive organization of a set of statements obtained as solution to open-ended problems

    The topology of the external activity complex of a matroid

    Get PDF
    We prove that the external activity complex Act<(M)\textrm{Act}_<(M) of a matroid is shellable. In fact, we show that every linear extension of LasVergnas's external/internal order <ext/int<_{ext/int} on MM provides a shelling of Act<(M)\textrm{Act}_<(M). We also show that every linear extension of LasVergnas's internal order <int<_{int} on MM provides a shelling of the independence complex IN(M)IN(M). As a corollary, Act<(M)\textrm{Act}_<(M) and MM have the same hh-vector. We prove that, after removing its cone points, the external activity complex is contractible if MM contains U3,1U_{3,1} as a minor, and a sphere otherwise.Comment: Comments are welcom

    Necessitat de col·laboració

    Get PDF

    Assigning mathematics tasks versus providing pre-fabricated mathematics in order to support learning to prove

    Get PDF
    We present types of mathematics tasks that we propose to our students —future high school mathematics teachers— in a geometry course whose objective is learning to prove and whose enterprise is collectively building an axiomatic system for a portion of plane geometry. We pursue the achievement of the course objective by involving students in different types of tasks instead of providing them with pre-fabricated mathematics
    corecore