11,966 research outputs found

    Application of airborne infrared technology to monitor building heat loss

    Get PDF
    The application of airborne infrared technology to the requirements for energy conservation in buildings was studied. Quantitative airborne data of the City of Ypsilanti, Michigan, were collected and processed to identify roof temperatures. A thermal scanner was flown at an altitude of 1,200 feet with two thermal bands 8.2-9.3 micrometers and 10.4-12.5 micrometers recorded by an analog system. Calibration was achieved by standard hot and cold plates. Using a thermal model to interpret ceiling insulation status, environmental factors were found to influence the relation between roof temperature and insulation. These include interior and sky temperatures, roofing materials, and the pitch and orientation of the roof. A follow-up mail survey established the ability to identify insulated and uninsulated houses from the airborne infrared data

    Three computer codes to read, plot and tabulate operational test-site recorded solar data

    Get PDF
    Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described

    Shrimp industry in and around Mandapam

    Get PDF
    Mandapam is an important place in view of living marine resources, particularly the. shrimp. The. Term 'Shrimp' includes prawns and lobsters, Shrimp industry has its full compliment of infrastructure facilities from building trawlers, to processing at Mandapam

    Understanding and utilization of Thematic Mapper and other remotely sensed data for vegetation monitoring

    Get PDF
    The TM Tasseled Cap transformation, which provides both a 50% reduction in data volume with little or no loss of important information and spectral features with direct physical association, is presented and discussed. Using both simulated and actual TM data, some important characteristics of vegetation and soils in this feature space are described, as are the effects of solar elevation angle and atmospheric haze. A preliminary spectral haze diagnostic feature, based on only simulated data, is also examined. The characteristics of the TM thermal band are discussed, as is a demonstration of the use of TM data in energy balance studies. Some characteristics of AVHRR data are described, as are the sensitivities to scene content of several LANDSAT-MSS preprocessing techniques

    Body of Knowledge (BOK) for Copper Wire Bonds

    Get PDF
    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices

    Real bad grammar: realistic grammatical description with grammaticality

    Get PDF
    Sampson (this issue) argues for a concept of “realistic grammatical description” in which the distinction between grammatical and ungrammatical sentences is irrelevant. In this article I also argue for a concept of “realistic grammatical description” but one in which a binary distinction between grammatical and ungrammatical sentences is maintained. In distinguishing between the grammatical and ungrammatical, this kind of grammar differs from that proposed by Sampson, but it does share the important property that invented sentences have no role to play, either as positive or negative evidence

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11

    An engineered Tetrahymena tRNA(Gln) for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression

    Get PDF
    A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of mutations at several sites of the nicotinic acetylcholine receptor, it is established that THG73 represents a major improvement over previous nonsense suppressors both in terms of efficiency and fidelity of unnatural amino acid incorporation. Compared with a previous tRNA used for in vivo suppression, THG73 is as much as 100-fold less likely to be acylated by endogenous synthetases of the Xenopus oocyte. This effectively eliminates a major concern of the in vivo suppression methodology, the undesirable incorporation of natural amino acids at the suppression site. In addition, THG73 is 4-10-fold more efficient at incorporating unnatural amino acids in the oocyte system. Taken together, these two advances should greatly expand the range of applicability of the in vivo nonsense suppression methodology
    corecore