7,407 research outputs found
The quiescent progenitors of four Type II-P/L supernovae
We present Large Binocular Telescope difference imaging data for the final
years of four Type II-P/L supernovae progenitors. For all four, we find no
significant evidence for stochastic or steady variability in the U, B, V, or
R-bands. Our limits constrain variability to no more than roughly 5-10% of the
expected R-band luminosities of the progenitors. These limits are comparable to
the observed variability of red supergiants in the Magellanic Clouds. Based on
these four events, the probability of a Type II-P/L progenitor having an
extended outburst after Oxygen ignition is <37% at 90% confidence. Our
observations cannot exclude short outbursts in which the progenitor returns to
within ~10% of its quiescent flux on the time scale of months with no dust
formation.Comment: 9 pages, 8 figures, 1 table. Accepted to MNRA
Accurate photoionisation cross section for He at non-resonant photon energies
The total single-photon ionisation cross section was calculated for helium
atoms in their ground state. Using a full configuration-interaction approach
the photoionisation cross section was extracted from the complex-scaled
resolvent. In the energy range from ionisation threshold to 59\,eV our results
agree with an earlier -spline based calculation in which the continuum is
box discretised within a relative error of in the non-resonant part of
the spectrum. Above the \He^{++} threshold our results agree on the other
hand very well to a recent Floquet calculation. Thus our calculation confirms
the previously reported deviations from the experimental reference data outside
the claimed error estimate. In order to extend the calculated spectrum to very
high energies, an analytical hydrogenic-type model tail is introduced that
should become asymptotically exact for infinite photon energies. Its
universality is investigated considering also H, Li, and HeH. With
the aid of the tail corrections to the dipole approximation are estimated.Comment: 20 pages, 7 figures, 2 table
Tunable refraction in a two dimensional quantum metamaterial
In this paper we consider a two-dimensional metamaterial comprising an array
of qubits (two level quantum objects). Here we show that a two-dimensional
quantum metamaterial may be controlled, e.g. via the application of a magnetic
flux, so as to provide controllable refraction of an input signal. Our results
are consistent with a material that could be quantum birefringent (beam
splitter) or not dependent on the application of this control parameter. We
note that quantum metamaterials as proposed here may be fabricated from a
variety of current candidate technologies from superconducting qubits to
quantum dots. Thus the ideas proposed in this work would be readily testable in
existing state of the art laboratories.Comment: 4 pages, 2 figure
Excited ionic and neutral fragments produced by dissociation of the N2(+)* H band
N I and N II fluorescent radiation was observed when N2 was irradiated by undispersed synchrotron radiation with an upper energy limit of approximately 200 eV. The excited fragments originate from dissociation of a band of excited ionic states of N2 lying between 34.7 and 44 eV
Self-Organization in Multimode Microwave Phonon Laser (Phaser): Experimental Observation of Spin-Phonon Cooperative Motions
An unusual nonlinear resonance was experimentally observed in a ruby phonon
laser (phaser) operating at 9 GHz with an electromagnetic pumping at 23 GHz.
The resonance is manifested by very slow cooperative self-detunings in the
microwave spectra of stimulated phonon emission when pumping is modulated at a
superlow frequency (less than 10 Hz). During the self-detuning cycle new and
new narrow phonon modes are sequentially ``fired'' on one side of the spectrum
and approximately the same number of modes are ``extinguished'' on the other
side, up to a complete generation breakdown in a certain final portion of the
frequency axis. This is usually followed by a short-time refractority, after
which the generation is fired again in the opposite (starting) portion of the
frequency axis. The entire process of such cooperative spectral motions is
repeated with high degree of regularity. The self-detuning period strongly
depends on difference between the modulation frequency and the resonance
frequency. This period is incommensurable with period of modulation. It
increases to very large values (more than 100 s) when pointed difference is
less than 0.05 Hz. The revealed phenomenon is a kind of global spin-phonon
self- organization. All microwave modes of phonon laser oscillate with the same
period, but with different, strongly determined phase shifts - as in optical
lasers with antiphase motions.Comment: LaTeX2e file (REVTeX4), 5 pages, 5 Postscript figures. Extended and
revised version of journal publication. More convenient terminology is used.
Many new bibliographic references are added, including main early theoretical
and experimental papers on microwave phonon lasers (in English and in
Russian
Superlight small bipolarons from realistic long-range Coulomb and Fr\"ohlich interactions
We report analytical and numerical results on the two-particle states of the
polaronic t-Jp model derived recently with realistic Coulomb and
electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates
and eigenvalues are calculated for two different geometries. Our results show
that the ground state is a bipolaronic singlet, made up of two polarons. The
bipolaron size increases with increasing ratio of the polaron hopping integral
t to the exchange interaction Jp but remains small compared to the system size
in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition
to a superconducting state with a critical temperature well in excess of 100K.
In the range t/Jp<1, there are distinct charge and spin gaps opening in the
density of states, specific heat, and magnetic susceptibility well above Tc.Comment: Calculation section and discussion of gap have been updated. Revised
calculations now enhance the predicted T_c in our model to over 200 K at
large hoppin
Spin injection in Silicon at zero magnetic field
In this letter, we show efficient electrical spin injection into a SiGe based
\textit{p-i-n} light emitting diode from the remanent state of a
perpendicularly magnetized ferromagnetic contact. Electron spin injection is
carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting
a strong out-of-plane anisotropy. The electrons spin polarization is then
analysed through the circular polarization of emitted light. All the light
polarization measurements are performed without an external applied magnetic
field \textit{i.e.} in remanent magnetic states. The light polarization as a
function of the magnetic field closely traces the out-of-plane magnetization of
the Co/Pt injector. We could achieve a circular polarization degree of the
emitted light of 3 % at 5 K. Moreover this light polarization remains almost
constant at least up to 200 K.Comment: accepted in AP
The Effect of ICT on Federal Radio Cooperation of Nigeria
Information and Communication Technologies (ICT) developments have existed in Nigeria with a significant growth over the past decade. This paper looks at the role of emerging ICT on the general operations of Federal Radio Cooperation of Nigeria in achieving an objective of information decimation. This study shows that the ICT facilities have brought significant improvement to the FRCN service delivery which is important factor for growth and development in the society even though there are still some problems militating the use of ICT in the FRCN. The highest factor militating against the use of ICT is shortage of power supply followed by poor funding and lastly poor network facilities
Unsupervised Segmentation of Action Segments in Egocentric Videos using Gaze
Unsupervised segmentation of action segments in egocentric videos is a
desirable feature in tasks such as activity recognition and content-based video
retrieval. Reducing the search space into a finite set of action segments
facilitates a faster and less noisy matching. However, there exist a
substantial gap in machine understanding of natural temporal cuts during a
continuous human activity. This work reports on a novel gaze-based approach for
segmenting action segments in videos captured using an egocentric camera. Gaze
is used to locate the region-of-interest inside a frame. By tracking two simple
motion-based parameters inside successive regions-of-interest, we discover a
finite set of temporal cuts. We present several results using combinations (of
the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains
egocentric videos depicting several daily-living activities. The quality of the
temporal cuts is further improved by implementing two entropy measures.Comment: To appear in 2017 IEEE International Conference On Signal and Image
Processing Application
- …
