469 research outputs found

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    Incidence and diversity of the fungal genera Aspergillus and Penicillium in Portuguese almonds and chestnuts

    Get PDF
    Almonds (Prunus dulcis (Miller) D.A. Webb) and European (sweet) chestnuts (Castanea sativa Miller) are of great economic and social impact in Mediterranean countries, and in some areas they constitute the main income of rural populations. Despite all efforts to control fungal contamination, toxigenic fungi are ubiquitous in nature and occur regularly in worldwide food supplies, and these nuts are no exception. This work aimed to provide knowledge on the general mycobiota of Portuguese almonds and chestnuts, and its evolution from field to the end of storage. For this matter, 45 field chestnut samples and 36 almond samples (30 field samples and six storage samples) were collected in Trás-os-Montes, Portugal. All fungi belonging to genus Aspergillus were isolated and identified to the section level. Fungi representative of other genera were identified to the genus level. In the field, chestnuts were mainly contaminated with the genera Fusarium, Cladosporium, Alternaria and Penicillium, and the genus Aspergillus was only rarely found, whereas almonds were more contaminated with Aspergillus. In almonds, Aspergillus incidence increased significantly from field to the end of storage, but diversity decreased, with potentially toxigenic isolates belonging to sections Flavi and Nigri becoming more significant and widespread throughout storage. These fungi were determined to be moderately associated, which can be indicative of mycotoxin co-contamination problems if adequate storage conditions are not secured.P. Rodrigues was supported by grants SFRH/BD/28332/2006 from Fundacao para a Ciencia e a Tecnologia (FCT), and SFRH/PROTEC/49555/2009 from FCT and Polytechnic Institute of Braganca, Portugal

    Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    Get PDF
    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or ‘dumb-bell’ shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax ‘artificial tektites’ show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation

    Clinical trial simulation to evaluate power to compare the antiviral effectiveness of two hepatitis C protease inhibitors using nonlinear mixed effect models: a viral kinetic approach.

    Get PDF
    International audienceBACKGROUND: Models of hepatitis C virus (HCV) kinetics are increasingly used to estimate and to compare in vivo drug's antiviral effectiveness of new potent anti-HCV agents. Viral kinetic parameters can be estimated using non-linear mixed effect models (NLMEM). Here we aimed to evaluate the performance of this approach to precisely estimate the parameters and to evaluate the type I errors and the power of the Wald test to compare the antiviral effectiveness between two treatment groups when data are sparse and/or a large proportion of viral load (VL) are below the limit of detection (BLD). METHODS: We performed a clinical trial simulation assuming two treatment groups with different levels of antiviral effectiveness. We evaluated the precision and the accuracy of parameter estimates obtained on 500 replication of this trial using the stochastic approximation expectation-approximation algorithm which appropriately handles BLD data. Next we evaluated the type I error and the power of the Wald test to assess a difference of antiviral effectiveness between the two groups. Standard error of the parameters and Wald test property were evaluated according to the number of patients, the number of samples per patient and the expected difference in antiviral effectiveness. RESULTS: NLMEM provided precise and accurate estimates for both the fixed effects and the inter-individual variance parameters even with sparse data and large proportion of BLD data. However Wald test with small number of patients and lack of information due to BLD resulted in an inflation of the type I error as compared to the results obtained when no limit of detection of VL was considered. The corrected power of the test was very high and largely outperformed what can be obtained with empirical comparison of the mean VL decline using Wilcoxon test. CONCLUSION: This simulation study shows the benefit of viral kinetic models analyzed with NLMEM over empirical approaches used in most clinical studies. When designing a viral kinetic study, our results indicate that the enrollment of a large number of patients is to be preferred to small population sample with frequent assessments of VL

    Brain correlates of pro-social personality traits: a voxel-based morphometry study

    Get PDF
    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.This research was funded by the Portuguese Foundation for Science and Technology (FCT): PIC/IC/83290/2007, which is supported by FEDER (POFC - COMPETE), and postdoctoral grant number: SFRH/BPD/75014/2010

    Is there a common water-activity limit for the three domains of life?

    Get PDF
    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life

    COVID-19 Vaccination Preferences of University Students and Staff in Hong Kong

    Get PDF
    IMPORTANCE: COVID-19 has required universities to rapidly develop vaccination policies for students and staff, yet little is known about the preferences of these individuals toward vaccination. OBJECTIVE: To quantify student and staff preferences for COVID-19 vaccination at a university in Hong Kong. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional online survey study was conducted from July 20 to September 21, 2021, before the announcement of a campus-wide vaccine mandate. A survey of 42 451 eligible university students and staff used discrete-choice experiment methods to quantify 7 attributes of COVID-19 vaccination: risk of a mild or moderate adverse event after vaccination, risk of a severe adverse event after vaccination, efficacy against COVID-19 infection, efficacy against severe manifestation of COVID-19 infection, duration of protection after vaccination, incentive for completing vaccination, and out-of-pocket costs. MAIN OUTCOMES AND MEASURES: A mixed logit regression model was used to estimate the preferences of attributes for COVID-19 vaccines and marginal willingness to pay (mWTP) adjusted for background characteristics, role, vaccination, and COVID-19 infection status of family or friends, adverse event status after vaccination among family and friends of participants, and scenario block. RESULTS: Among 42 451 eligible university students and staff invited, 3423 individuals completed the survey (mean [SD] age, 27.1 [9.9] years; 2053 [60.0%] women). Participants included 2506 students (73.2%) and 917 staff (26.8%), with a response rate of 8.1%. Quarantine-free travel was preferred (β = 0.86; 95% CI, 0.72-0.99; mWTP: 235.9;95235.9; 95% CI, 190.3-294.2),followedbyefficacyagainstanyCOVID19infection(β=0.30;95294.2), followed by efficacy against any COVID-19 infection (β = 0.30; 95% CI, 0.29-0.32; mWTP: 84.1; 95% CI, 71.871.8-100.8), against severe manifestation of COVID-19 infection (β = 0.25; 95% CI, 0.24-0.27; mWTP: 69.7;9569.7; 95% CI, 465-653),andriskofsevereadverseeventsfollowingvaccination(β=0.24;95653), and risk of severe adverse events following vaccination (β = −0.24; 95% CI, −0.27 to −0.21; mWTP: −66.8; 95% CI, −81.5to81.5 to −55.3). Participants were less concerned about protection duration (β = 0.17; 95% CI, 0.15-0.18; mWTP: 46.0;9546.0; 95% CI, 38.6-56.2)andriskofmildtomoderateadverseevents(β=0.12;9556.2) and risk of mild to moderate adverse events (β = −0.12; 95% CI, −0.13 to −0.10; mWTP: −32.7; 95% CI, −41.2to41.2 to −26.4). CONCLUSIONS AND RELEVANCE: Preference of all attributes were significant and were considered important by the participants for vaccine decision-making. Insights drawn could assist policy makers in future vaccination decisions, such as campus vaccine mandate and requirement of a third dose

    The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects

    Get PDF
    Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models

    Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial <it>ND5 </it>deletion recently discovered to segregate among wild populations of the soil nematode, <it>Caenorhabditis briggsae</it>. The normal product of <it>ND5 </it>is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.</p> <p>Results</p> <p>We quantified significant variation among <it>C. briggsae </it>isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific <it>ND5 </it>deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to <it>ND5 </it>deletion level and that <it>C. briggsae </it>isolates with high <it>ND5 </it>deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with <it>ND5 </it>deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured <it>in vivo </it>showed a significant non-linear relationship with <it>ND5 </it>deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms.</p> <p>Conclusions</p> <p>Our findings suggest that the <it>ND5 </it>deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.</p
    corecore