527 research outputs found
Universal Dimensions of Meaning Derived from Semantic Relations among Words and Senses: Mereological Completeness vs. Ontological Generality
A key to semantic analysis is a precise and practically useful definition of meaning that is general for all domains of knowledge. We previously introduced the notion of weak semantic map: a metric space allocating concepts along their most general (universal) semantic characteristics while at the same time ignoring other, domain-specific aspects of their meanings. Here we address questions of the number, quality, and mutual independence of the weak semantic dimensions. Specifically, we employ semantic relationships not previously used for weak semantic mapping, such as holonymy/meronymy (“is-part/member-of”), and we compare maps constructed from word senses to those constructed from words. We show that the “completeness” dimension derived from the holonym/meronym relation is independent of, and practically orthogonal to, the “abstractness” dimension derived from the hypernym-hyponym (“is-a”) relation, while both dimensions are orthogonal to the maps derived from synonymy and antonymy. Interestingly, the choice of using relations among words vs. senses implies a non-trivial trade-off between rich and unambiguous information due to homonymy and polysemy. The practical utility of the new and prior dimensions is illustrated by the automated evaluation of different kinds of documents. Residual analysis of available linguistic resources, such as WordNet, suggests that the number of universal semantic dimensions representable in natural language may be finite. Their complete characterization, as well as the extension of results to non-linguistic materials, remains an open challenge
Microtubules: Montroll's kink and Morse vibrations
Using a version of Witten's supersymmetric quantum mechanics proposed by
Caticha, we relate Montroll's kink to a traveling, asymmetric Morse double-well
potential suggesting in this way a connection between kink modes and
vibrational degrees of freedom along microtubulesComment: 2pp, twocolum
Dynamical model of sequential spatial memory: winnerless competition of patterns
We introduce a new biologically-motivated model of sequential spatial memory
which is based on the principle of winnerless competition (WLC). We implement
this mechanism in a two-layer neural network structure and present the learning
dynamics which leads to the formation of a WLC network. After learning, the
system is capable of associative retrieval of pre-recorded sequences of spatial
patterns.Comment: 4 pages, submitted to PR
Dynamics of Neural Networks with Continuous Attractors
We investigate the dynamics of continuous attractor neural networks (CANNs).
Due to the translational invariance of their neuronal interactions, CANNs can
hold a continuous family of stationary states. We systematically explore how
their neutral stability facilitates the tracking performance of a CANN, which
is believed to have wide applications in brain functions. We develop a
perturbative approach that utilizes the dominant movement of the network
stationary states in the state space. We quantify the distortions of the bump
shape during tracking, and study their effects on the tracking performance.
Results are obtained on the maximum speed for a moving stimulus to be
trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption
Stochastic Continuous Time Neurite Branching Models with Tree and Segment Dependent Rates
In this paper we introduce a continuous time stochastic neurite branching
model closely related to the discrete time stochastic BES-model. The discrete
time BES-model is underlying current attempts to simulate cortical development,
but is difficult to analyze. The new continuous time formulation facilitates
analytical treatment thus allowing us to examine the structure of the model
more closely. We derive explicit expressions for the time dependent
probabilities p(\gamma, t) for finding a tree \gamma at time t, valid for
arbitrary continuous time branching models with tree and segment dependent
branching rates. We show, for the specific case of the continuous time
BES-model, that as expected from our model formulation, the sums needed to
evaluate expectation values of functions of the terminal segment number
\mu(f(n),t) do not depend on the distribution of the total branching
probability over the terminal segments. In addition, we derive a system of
differential equations for the probabilities p(n,t) of finding n terminal
segments at time t. For the continuous BES-model, this system of differential
equations gives direct numerical access to functions only depending on the
number of terminal segments, and we use this to evaluate the development of the
mean and standard deviation of the number of terminal segments at a time t. For
comparison we discuss two cases where mean and variance of the number of
terminal segments are exactly solvable. Then we discuss the numerical
evaluation of the S-dependence of the solutions for the continuous time
BES-model. The numerical results show clearly that higher S values, i.e. values
such that more proximal terminal segments have higher branching rates than more
distal terminal segments, lead to more symmetrical trees as measured by three
tree symmetry indicators.Comment: 41 pages, 2 figures, revised structure and text improvement
A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions
Neural connectivity at the cellular and mesoscopic level appears very
specific and is presumed to arise from highly specific developmental
mechanisms. However, there are general shared features of connectivity in
systems as different as the networks formed by individual neurons in
Caenorhabditis elegans or in rat visual cortex and the mesoscopic circuitry of
cortical areas in the mouse, macaque, and human brain. In all these systems,
connection length distributions have very similar shapes, with an initial large
peak and a long flat tail representing the admixture of long-distance
connections to mostly short-distance connections. Furthermore, not all
potentially possible synapses are formed, and only a fraction of axons (called
filling fraction) establish synapses with spatially neighboring neurons. We
explored what aspects of these connectivity patterns can be explained simply by
random axonal outgrowth. We found that random axonal growth away from the soma
can already reproduce the known distance distribution of connections. We also
observed that experimentally observed filling fractions can be generated by
competition for available space at the target neurons--a model markedly
different from previous explanations. These findings may serve as a baseline
model for the development of connectivity that can be further refined by more
specific mechanisms.Comment: 31 pages (incl. supplementary information); Cerebral Cortex Advance
Access published online on May 12, 200
Context-dependent spatially periodic activity in the human entorhinal cortex
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60 degrees rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency
A first principle (3+1) dimensional model for microtubule polymerization
In this paper we propose a microscopic model to study the polymerization of
microtubules (MTs). Starting from fundamental reactions during MT's assembly
and disassembly processes, we systematically derive a nonlinear system of
equations that determines the dynamics of microtubules in 3D. %coexistence with
tubulin dimers in a solution. We found that the dynamics of a MT is
mathematically expressed via a cubic-quintic nonlinear Schrodinger (NLS)
equation. Interestingly, the generic 3D solution of the NLS equation exhibits
linear growing and shortening in time as well as temporal fluctuations about a
mean value which are qualitatively similar to the dynamic instability of MTs
observed experimentally. By solving equations numerically, we have found
spatio-temporal patterns consistent with experimental observations.Comment: 12 pages, 2 figures. Accepted in Physics Letters
Topological structures of complex belief systems (II): Textual materialization
Mythical and religious belief systems in a social context can be regarded as a conglomeration of sacrosanct rites, which revolve around substantive values that involve an element of faith. Moreover, we can conclude that ideologies, myths and beliefs can all be analyzed in terms of systems within a cultural context. The significance of being able to define ideologies, myths and beliefs as systems is that they can figure in cultural explanations. This, in turn, means that such systems can figure in logic-mathematical analyses
Prevalence and elimination of sibling neurite convergence in motor units supplying neonatal and adult mouse skeletal muscle
- …
