765 research outputs found
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Action for the eleven dimensional multiple M-wave system
We present the covariant supersymmetric and kappa-symmetric action for a
system of N nearly coincident M-waves (multiple M0-brane system) in flat eleven
dimensional superspace.Comment: 4+ pages, RevTeX4, no figures. V2: misprints corrected, discussion
extended, references added, LaTeX, 10 pages. V3: misprints corrected. V4,
extended version, 1+13 pages, to appear in JHE
Double Field Theory Formulation of Heterotic Strings
We extend the recently constructed double field theory formulation of the
low-energy theory of the closed bosonic string to the heterotic string. The
action can be written in terms of a generalized metric that is a covariant
tensor under O(D,D+n), where n denotes the number of gauge vectors, and n
additional coordinates are introduced together with a covariant constraint that
locally removes these new coordinates. For the abelian subsector, the action
takes the same structural form as for the bosonic string, but based on the
enlarged generalized metric, thereby featuring a global O(D,D+n) symmetry.
After turning on non-abelian gauge couplings, this global symmetry is broken,
but the action can still be written in a fully O(D,D+n) covariant fashion, in
analogy to similar constructions in gauged supergravities.Comment: 28 pages, v2: minor changes, version published in JHE
N=8 Superspace Constraints for Three-dimensional Gauge Theories
We present a systematic analysis of the N=8 superspace constraints in three
space-time dimensions. The general coupling between vector and scalar
supermultiplets is encoded in an SO(8) tensor W_{AB} which is a function of the
matter fields and subject to a set of algebraic and super-differential
relations. We show how the conformal BLG model as well as three-dimensional
super Yang-Mills theory provide solutions to these constraints and can both be
formulated in this universal framework.Comment: 34 + 10 pages; added references, minor correction
Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors
We construct an action for non-abelian 2-form in 6-dimensions. Our action
consists of a non-abelian generalization of the abelian action of Perry and
Schwarz for a single five-brane. It admits a self-duality equation on the field
strength as the equation of motion. It has a modified 6d Lorentz symmetry. On
dimensional reduction on a circle, our action gives the standard 5d Yang-Mills
action plus higher order corrections. Based on these properties, we propose
that our theory describes the gauge sector of multiple M5-branes in flat space.Comment: LaTeX, 26 pages. v2: improved discussion of Lorentz symmetry. ref
added. v3: add comments in the discussion section on the inclusion of scalar
fields and supersymmetry; title changed to a more suitable one; version
published in JHE
Superconformal symmetry and maximal supergravity in various dimensions
In this paper we explore the relation between conformal superalgebras with 64
supercharges and maximal supergravity theories in three, four and six
dimensions using twistorial oscillator techniques. The massless fields of N=8
supergravity in four dimensions were shown to fit into a CPT-self-conjugate
doubleton supermultiplet of the conformal superalgebra SU(2,2|8) a long time
ago. We show that the fields of maximal supergravity in three dimensions can
similarly be fitted into the super singleton multiplet of the conformal
superalgebra OSp(16|4,R), which is related to the doubleton supermultiplet of
SU(2,2|8) by dimensional reduction. Moreover, we construct the ultra-short
supermultiplet of the six-dimensional conformal superalgebra OSp(8*|8) and show
that its component fields can be organized in an on-shell superfield. The
ultra-short OSp(8*|8) multiplet reduces to the doubleton supermultiplet of
SU(2,2|8) upon dimensional reduction. We discuss the possibility of a chiral
maximal (4,0) six-dimensional supergravity theory with USp(8) R-symmetry that
reduces to maximal supergravity in four dimensions and is different from
six-dimensional (2,2) maximal supergravity, whose fields cannot be fitted into
a unitary supermultiplet of a simple conformal superalgebra. Such an
interacting theory would be the gravitational analog of the (2,0) theory.Comment: 54 pages, PDFLaTeX, Section 5 and several references added. Version
accepted for publication in JHE
Lectures on Nongeometric Flux Compactifications
These notes present a pedagogical review of nongeometric flux
compactifications. We begin by reviewing well-known geometric flux
compactifications in Type II string theory, and argue that one must include
nongeometric "fluxes" in order to have a superpotential which is invariant
under T-duality. Additionally, we discuss some elementary aspects of the
worldsheet description of nongeometric backgrounds. This review is based on
lectures given at the 2007 RTN Winter School at CERN.Comment: 31 pages, JHEP
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope
The ANTARES telescope is well-suited for detecting astrophysical transient
neutrino sources as it can observe a full hemisphere of the sky at all times
with a high duty cycle. The background due to atmospheric particles can be
drastically reduced, and the point-source sensitivity improved, by selecting a
narrow time window around possible neutrino production periods. Blazars, being
radio-loud active galactic nuclei with their jets pointing almost directly
towards the observer, are particularly attractive potential neutrino point
sources, since they are among the most likely sources of the very high-energy
cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions
with the surrounding medium. Moreover, blazars generally show high time
variability in their light curves at different wavelengths and on various time
scales. This paper presents a time-dependent analysis applied to a selection of
flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV
Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012.
The results are compatible with fluctuations of the background. Upper limits on
the neutrino fluence have been produced and compared to the measured gamma-ray
spectral energy distribution.Comment: 27 pages, 16 figure
Six-dimensional Supergravity and Projective Superfields
We propose a superspace formulation of N=(1,0) conformal supergravity in six
dimensions. The corresponding superspace constraints are invariant under
super-Weyl transformations generated by a real scalar parameter. The known
variant Weyl super-multiplet is recovered by coupling the geometry to a
super-3-form tensor multiplet. Isotwistor variables are introduced and used to
define projective superfields. We formulate a locally supersymmetric and
super-Weyl invariant action principle in projective superspace. Some families
of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3),
(2.14b), (2.16) and (2.17) correcte
Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds
The six-dimensional effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau threefold is determined by using an M-theory
lift. The low-energy data are derived by comparing a circle reduction of a
general six-dimensional (1,0) gauged supergravity theory with the effective
action of M-theory on the resolved Calabi-Yau threefold. The derivation
includes six-dimensional tensor multiplets for which the (anti-) self-duality
constraints are imposed on the level of the five-dimensional action. The vector
sector of the reduced theory is encoded by a non-standard potential due to the
Green-Schwarz term in six dimensions. This Green-Schwarz term also contains
higher curvature couplings which are considered to establish the full map
between anomaly coefficients and geometry. F-/M-theory duality is exploited by
moving to the five-dimensional Coulomb branch after circle reduction and
integrating out massive vector multiplets and matter hypermultiplets. The
associated fermions then generate additional Chern-Simons couplings at
one-loop. Further couplings involving the graviphoton are induced by quantum
corrections due to excited Kaluza-Klein modes. On the M-theory side integrating
out massive fields corresponds to resolving the singularities of the Calabi-Yau
threefold, and yields intriguing relations between six-dimensional anomalies
and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections
improve
- …
